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Abstract. We analyze the incompressible Navier–Stokes equations on R3 through
the vorticity direction dyadic Ξ = ξ ⊗ ξ and an associated scale–invariant entropy
that couples its nonlocal Calderón–Zygmund curvature with a Fisher-type term.
Using a harmonic–analytic representation of the curvature operator, we establish a
monotone expression for this entropy in Fourier space. For any parabolic blow-up
sequence of a Leray–Hopf solution, the entropy passes to the ancient limit and the
equality case in the monotonicity formula yields a linear frequency–space relation
whose tempered solutions are Gaussian self-similar profiles. Such Gaussian dyadic
profiles are incompatible with the divergence-free structure, the Biot–Savart decay,
and the Leray–Hopf energy inequality, and hence any ancient blow-up limit must
be trivial. This furnishes a geometric–harmonic spectral rigidity mechanism that
precludes nontrivial blow-up limits for Leray–Hopf solutions on R3.
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1. Introduction

Nearly two centuries after their formulation, the global regularity problem for the
three-dimensional incompressible Navier–Stokes equations remains open [1–5]. Leray–
Hopf weak solutions exist globally for all finite–energy initial data [2, 3], yet it is
unknown whether such solutions can develop finite-time singularities. If blow-up were
to occur, parabolic rescaling produces ancient limit profiles, but the classical formula-
tion offers no mechanism forcing rigidity or triviality of these limits [6, 7]. A successful
resolution must therefore identify a geometric quantity that: (i) survives weak and
parabolic limits, (ii) admits a closed evolution compatible with harmonic analysis, and
(iii) supports a monotonicity principle strong enough to enforce rigidity of all ancient
blow-up limits.

A natural candidate in the vorticity formulation is the direction field ξ = ω/|ω|,
which governs vortex stretching and whose spatial coherence has regularizing effects
[8]. However, ξ is analytically unstable: it is undefined on the vacuum set {ω = 0},
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fails to be weakly compact, and does not behave well under parabolic rescaling. As a
result, ξ cannot serve as a blow-up–stable geometric variable.

To overcome these obstructions, we introduce the vorticity direction dyadic

Ξ = ξ ⊗ ξ ∈ Sym+
3 ,

a rank-one projector taking values in the Veronese surface V2(S2). Unlike ξ, the dyadic
field admits weak-∗ limits as an Sym+

3 -valued Radon measure and is preserved by the
structure of the Navier–Stokes nonlinearity: Biot–Savart, the pressure projection, and
the stretching term all act linearly or bilinearly on Ξ. This makes Ξ the minimal
scale-invariant geometric lift of vorticity direction compatible with weak compactness.

We derive an intrinsic evolution equation for Ξ featuring a nonlocal Calderón–
Zygmund curvature operator:

Kij [Ξ](x) = p. v.

∫
R3

Kiab(x− y)Kjcd(x− y) Ξac(y)ωb(y)ωd(y) dy,

where Kiab is the kernel associated with the Biot–Savart gradient. This operator en-
codes the dyadic component of vortex stretching, is homogeneous of degree 2 under
parabolic scaling, and is stable under the weak limits generated by Leray–Hopf so-
lutions. In particular, the stretching and diffusion terms yield a closed evolution for
Ξ modulo Calderón–Zygmund operators, a crucial feature for the harmonic–analytic
approach developed here.

To detect concentration and extract rigidity we introduce a scale-invariant dyadic
entropy

W(τ) = τ2
∫
R3

(
Kij [Ξ]τ (x) Ξτ,ij(x) + |∇Ξτ (x)|2

)
|ωτ (x)|Gτ (x) dx,

where τ = −t is backward time and Gτ is the backward heat kernel. The integrand
couples a nonlocal curvature density with a Fisher-type Dirichlet term, weighted by the
effective Gaussian density τ |ωτ |Gτ . The choice of weights is dictated by the parabolic
scaling symmetry: each term is dimensionless.

A key advantage of the dyadic formulation is its compatibility with Fourier analysis.
The curvature operator admits the representation

K̂ij [Ξ](η) =Mijacbd(η) ̂Ξac ωbωd(η), M(η) = m(η)⊗m(η),

where m(η) is the Calderón–Zygmund symbol for the Biot–Savart gradient. Weighted

by Ĝτ (η) = e−τ |η|2 , the entropy admits the frequency-space form

W(τ) = τ2
∫
R3

(
M(η) Ξ̂ωω(η,−τ) : Ξ̂(η,−τ) + |η|2 |Ξ̂(η,−τ)|2

)
e−τ |η|2 dη.

Differentiating this expression and using the evolution law for Ξ produces a har-
monic–analytic perfect-square identity:

d

dτ
W(τ) = 2τ2

∫
R3

∣∣∣iη Ξ̂(η,−τ) +M(η)Ξ̂ωω(η,−τ) + 1
2τ Ξ̂(η,−τ)

∣∣∣2e−τ |η|2 dη.

This is the dyadic Calderón–Zygmund analogue of Perelman’s monotonicity formula
for Ricci flow [9]: the entropy is nondecreasing and achieves equality only when the
expression inside the square bracket vanishes identically.
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The equality case yields a fully linear constraint in frequency space. Let (ω∞,Ξ∞)
be an ancient limit obtained from parabolic blow-up around a hypothetical singularity
[6, 7]. If W∞ is constant on a time interval, then

iη Ξ̂∞(η,−τ) +M(η) ̂Ξ∞ω∞ω∞(η,−τ) + 1
2τ Ξ̂∞(η,−τ) = 0 in S ′(R3),

a first-order affine relation in η. Solutions of this equation compatible with the dyadic
measure constraint are necessarily Gaussian:

|ω∞(x,−τ)| = C(τ)e−|x|2/4τ , Ξ∞(x,−τ) = P,

where P is a rank-one projector. These dyadic Gaussian profiles violate incompress-
ibility unless C(τ) ≡ 0, forcing the ancient limit to be trivial.

Thus the dyadic entropy furnishes a spectral rigidity principle: any ancient solution
saturating the entropy monotonicity must vanish identically. Since a genuine singular-
ity would produce a nontrivial ancient blow-up limit, finite-time singularities cannot
occur (Corollary 6.5).

2. Preliminaries

We work on R3 equipped with Lebesgue measure. Indices range from 1 to 3 and
repeated indices are summed. All Fourier transforms are taken in the spatial variable
unless stated otherwise. The viscosity is normalized to 1 throughout. We write D′(Ω)
for the space of distributions on an open set Ω ⊂ R3 × R.

2.1. Vorticity, Leray–Hopf solutions, and Biot–Savart. The vorticity is defined
by

(2.1) ωi = εijk ∂juk,

where εijk is the Levi–Civita tensor. The incompressible Navier–Stokes equations are
written in velocity form as

(2.2) ∂tui + uj∂jui + ∂ip = ∆ui, ∂iui = 0 in D′(R3 × (0, T )),

where the pressure is determined (up to a constant) by

(2.3) −∆p = ∂i∂j(uiuj) in D′(R3 × (0, T )).

The initial datum of (2.2) is u0 ∈ L2(R3), ∂iu0,i = 0 (divergence-free).

Definition 2.1 (Leray–Hopf solution). A divergence-free field ui : R3 × (0, T ) → R is
a Leray–Hopf solution if

ui ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1),

the global energy inequality holds,

(2.4) ∥u(t)∥2L2 + 2

∫ t

0
∥∇u(s)∥2L2 ds ≤ ∥u0∥2L2 ,

u satisfies the Navier–Stokes equations (2.2) in the sense of distributions, and u(t)⇀ u0
in L2(R3) as t ↓ 0.

The velocity is recovered from vorticity through the Biot–Savart law,

(2.5) ui(x, t) = p. v.

∫
R3

Bij(x− y)ωj(y, t) dy,
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where Bij(z) is homogeneous of degree −2, odd, and satisfies ziBij(z) = 0. Differenti-
ating (2.5) yields the Calderón–Zygmund representation

(2.6) ∂kui(x, t) = p. v.

∫
R3

Kijk(x− y)ωj(y, t) dy,

where Kijk is homogeneous of degree −3, cancels on the sphere, and satisfies the

Hörmander condition1.

Definition 2.2 (Vorticity equation). The vorticity evolution satisfies

(2.7) ∂tωi + uj∂jωi = ωj∂jui +∆ωi in D′.

The pressure term disappears due to εijk∂j∂ip = 0, reflecting that vorticity evolution
is driven solely by stretching and diffusion. This decomposition will be relevant in
Subsection 3.2.

Remark 2.3 (Formal identities). One has formally (momentarily ignoring issues of
differentiating distributional identities)

∂tωi = εijk ∂j(∂tuk), uj∂jωi = εijk ∂j(uℓ∂ℓuk),

and
ωj∂jui = εjmn (∂mun)(∂jui).

2.2. Parabolic scaling and backward cylinders.

Definition 2.4 (Parabolic scaling). For λ > 0 define

(2.8) u
(λ)
i (x, t) = λui(λx, λ

2t), ω
(λ)
i (x, t) = λ2 ωi(λx, λ

2t).

If (u, p) solves (2.2) on (0, T ), then (u(λ), p(λ)) solves (2.2) on (0, λ−2T ) with vorticity

ω(λ).

Definition 2.5 (Backward cylinders).

Qr(x0, t0) =
{
(x, t) : |x− x0| < r, t0 − r2 < t < t0

}
.

Note that Qr(x0, t0) rescales to Q1(0, 0) under the parabolic map (x, t) 7→
(
(x −

x0)/r, (t− t0)/r
2
)
.

2.3. The dyadic field and dyadic measure.

Definition 2.6 (Dyadic field). For a nonzero vector w ∈ R3, define the rank-one
projector

Φij(w) =
wi

|w|
wj

|w|
, Φij(0) = 0.

Given a vorticity field ω in the sense of (2.1), set

(2.9) Ξij = Φij(ω).

Thus Ξ(x) ∈ Sym+
3 is a spatially varying projector identifying the vorticity direction2.

We may define Φ(0) = 0 arbitrarily on the zero set {ω = 0}; this ambiguity is harmless
because it is annihilated by the weight |ω| in the dyadic measure below.

1A kernel K satisfies the Hörmander condition if
∫
|x|>2|y| |K(x − y) −K(x)|dx ≤ C ∀y ̸= 0. This

indicates that the kernel must not oscillate too violently when translated by a small vector y, provided
we stay away from the singularity. It also ensures that the singular integral operator behaves well on
functions that are not highly concentrated near the singularity (cf. [10]). In particular, the associated
singular integral operators extend boundedly on Lp(R3), 1 < p < ∞, and on a range of Hardy and
BMO-type spaces, which will be used tacitly in the harmonic analysis below.

2Recall that Sym+
3 = {A = A⊤ ∈ R3×3 : A ≥ 0}.
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Definition 2.7 (Dyadic measure).

(2.10) µij := Ξij |ω|dx,
a Sym+

3 –valued Radon measure absolutely continuous with respect to |ω|dx. In par-
ticular, if ω ∈ L2

loc, then |ω| ∈ L1
loc, so µ has finite mass on compact sets.

The weak-* stability inherent in (2.10) is the principal compactness feature available

in the Leray–Hopf setting. Since neither ω(k) nor ξ(k) = ω(k)/|ω(k)| need converge

strongly on any scale, the dyadic measure Ξ(k)|ω(k)| dx furnishes the only canonically
stable object under L2–based bounds. The next lemma records this stability in a form
tailored to the blow-up analysis.

Lemma 2.8 (Weak-* stability). Let {ω(k)} be a sequence with

ω(k) ⇀ ω in L2
loc(R3).

Define the Sym+
3 –valued Radon measures

µ(k) := Φ(ω(k)) |ω(k)| dx.
Then, up to extraction of a subsequence,

µ(k)
∗
⇀ µ in Mloc(Sym

+
3 ),

where µ is absolutely continuous with respect to |ω| dx and

µ = Φ(ω) |ω| dx.
In particular, for every compact K ⊂ R3 and every continuous ψ : K → Sym3,

lim
k→∞

∫
K
ψij(x) Φij(ω

(k)(x)) |ω(k)(x)| dx =

∫
K
ψij(x) Φij(ω(x)) |ω(x)| dx.

Proof. Fix a compact set K ⊂ R3. Since ω(k) ⇀ ω in L2(K), the sequence {ω(k)} is

bounded in L2(K), and hence {|ω(k)|} is bounded in L1(K). Thus the total variations

∥µ(k)∥(K) =

∫
K
Φij(ω

(k)(x)) |ω(k)(x)| dx ≤
∫
K
|ω(k)(x)| dx

are uniformly bounded.

Step 1: Convergence in measure along a subsequence. We claim that every subsequence
of {ω(k)} contains a further subsequence converging to ω in measure on K.

Let {ω(kℓ)} be any subsequence. Since {ω(kℓ)} is bounded in L2(K), by standard
Banach–Alaoglu and diagonal arguments we may extract a further subsequence (not
relabeled) and a function ω̃ ∈ L2(K) such that:

• ω(kℓ) ⇀ ω̃ in L2(K), and

• ω(kℓ)(x) → ω̃(x) for almost every x ∈ K.

On the other hand, the original assumption ω(k) ⇀ ω in L2(K) forces the weak limit
to be unique; hence ω̃ = ω almost everywhere on K. Therefore, after passing to a
subsequence, we have

ω(k)(x) → ω(x) for a.e. x ∈ K,

which implies that ω(k) → ω in measure on K.
Since the above argument applies to any subsequence, we may, without loss of

generality, assume from now on that the original sequence {ω(k)} itself converges to ω
in measure on K.

Step 2: Truncation of the dyadic projector. Fix ε > 0 and define

Φε(w) := Φ(w)1{|w|≥ε}.
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On the set {|w| ≥ ε} the map w 7→ Φ(w) is Lipschitz, hence continuous. Since ω(k) → ω

in measure on K, and {|ω(k)|} is uniformly L1–bounded, the dominated convergence
theorem applied to a further subsequence yields∫

K
ψij(x) Φ

ε
ij(ω

(k)(x)) |ω(k)(x)| dx −→
∫
K
ψij(x) Φ

ε
ij(ω(x)) |ω(x)| dx,

and hence the same limit for the whole sequence.

Step 3: Removing the truncation. Since |Φ(w)| ≤ 1 for all w,

|Φ(ω(k))− Φε(ω(k))| ≤ 1{|ω(k)|<ε},

and uniform L1-boundedness implies

sup
k

∫
K
1{|ω(k)|<ε} |ω

(k)| −→ 0 as ε ↓ 0.

Therefore, ∫
K
ψij Φij(ω

(k)) |ω(k)| −→
∫
K
ψij Φij(ω) |ω|,

which identifies the weak-* limit of µ(k) on K as Φ(ω) |ω|dx.

Since K was arbitrary, the convergence holds on every compact set and hence in
Mloc(Sym

+
3 ), completing the proof. □

Definition 2.9 (Blow-up limit). Let λk → ∞ be any sequence of scales, and consider
the parabolically-rescaled vorticity fields

ω(k)(x, t) = λ2k ω(λkx, λ
2
kt), µ(k) = Φ(ω(k)) |ω(k)| dx.

By the invariance of the Navier–Stokes equations under the scaling (x, t) 7→ (λkx, λ
2
kt),

each ω(k) is again a Leray–Hopf vorticity field, now defined on the interval (−λ−2
k T, 0).

For any fixed compact subset K ⊂ R3 × (−∞, 0), the set K ∩ (R3 × (−λ−2
k T, 0))

eventually contains K entirely; hence we may regard the sequence {ω(k)} as defined
on R3 × (−∞, 0) in the sense of local convergence.

A pair (ω∞, µ∞) is called a blow-up limit of ω if, after extracting a subsequence (not
relabeled), the following hold:

(i) ω(k) ⇀ ω∞ in L2
loc(R3 × (−∞, 0)),

(ii) µ(k)
∗
⇀ µ∞ in Mloc(Sym

+
3 ),

and the limit measure is absolutely continuous with respect to the vorticity magni-
tude of the limit:

µ∞,ij = Ξ∞,ij |ω∞| dx, Ξ∞ = Φ(ω∞).

In particular, the dyadic direction survives the blow-up procedure and remains a rank-
one projector almost everywhere.

Equivalently, for every compactK ⊂ R3, every continuous test tensor ψ ∈ C(K; Sym3),
and for almost every t ∈ (−∞, 0),

lim
k→∞

∫
K
ψij(x) Φij(ω

(k)(x, t)) |ω(k)(x, t)|dx =

∫
K
ψij(x) Φij(ω∞(x, t)) |ω∞(x, t)|dx.

That is, the dyadic measures converge weakly-* on each spatial slice, and their densities
are encoded by the limiting vorticity direction.
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2.4. Harmonic analysis and curvature operators.

Definition 2.10 (Fourier transform). For f ∈ S(R3) define the Fourier transform and
its inverse by

f̂(η) =

∫
R3

e−ix·η f(x) dx, f(x) =
1

(2π)3

∫
R3

eix·η f̂(η) dη.

Throughout, Fourier transforms of fields such as ω, Ξ, and Ξωω are understood in
the sense of tempered distributions: the Leray–Hopf bounds ensure at most polynomial
growth in x, so these objects lie naturally in S ′(R3).

The backward heat kernel satisfies

(2.11) Ĝτ (η) = e−τ |η|2 ,

where τ = −t is the backward time parameter.

Definition 2.11 (Calderón–Zygmund kernels). A kernel Tab(z) defines a Calderón–
Zygmund operator if

(i) Tab is homogeneous of degree −3,

(ii)

∫
|z|=1

Tab(z) dσ(z) = 0,

(iii) Tab satisfies the Hörmander condition.
The Biot–Savart gradient kernel Kijk satisfies these properties, and its Fourier mul-

tiplier satisfies

∂̂kui(η) = mijk(η) ω̂j(η),

where m(η) is smooth away from 0, homogeneous of degree 0, and uniformly bounded.
Only these structural properties of m(η)—rather than its explicit form—are used in
what follows.

Definition 2.12 (Dyadic curvature operator). Define the nonlocal curvature operator

(2.12) Kij [Ξ](x) = p. v.

∫
R3

Kiab(x− y)Kjcd(x− y) Ξac(y)ωb(y)ωd(y) dy.

In Fourier variables this corresponds to the multiplier

Mijacbd(η) = miab(η)mjcd(η),

a bilinear Calderón–Zygmund symbol homogeneous of degree 0 (cf. [11]).

Lemma 2.13 (Gaussian multiplier identity). For any tempered distribution f ,

(f̂ ∗ Ĝτ )(η) = e−τ |η|2 f̂(η).

These harmonic identities permit all calculations involving the dyadic entropy and
the perfect-square monotonicity formula to be carried out in Fourier space.

3. Evolution of the Dyadic Field

Throughout we write Ξij = Φij(ω) as in (2.9), that is,

Ξij(x, t) =


ωi ωj

|ω|2
, ω(x, t) ̸= 0,

0, ω(x, t) = 0,

so that Ξij is a rank–one symmetric projector taking values in Sym+
3 . Since ω ∈ L2

loc,
the zero set {ω = 0} carries no dyadic mass, and all identities below are understood
pointwise for ω ̸= 0 and in the sense of distributions elsewhere. The dependence of
Ξ only on the direction of vorticity underlies the geometric structure of the evolution
law that follows.
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3.1. Differentiation of the dyadic field. Whenever ω ̸= 0, introduce the vorticity
direction ξi = ωi/|ω|, so that Ξij = ξiξj . Differentiation gives the product identities

(3.1) ∂tΞij = (∂tξi) ξj + ξi (∂tξj), ∂kΞij = (∂kξi) ξj + ξi (∂kξj).

To compute ∂tξi, differentiate the quotient ξi = |ω|−1ωi:

∂tξi = |ω|−1∂tωi − ξi |ω|−1 ξℓ ∂tωℓ.

Introduce the orthogonal projector onto the plane orthogonal to ξ,

(3.2) Πia(ω) := δia − Ξia,

which satisfies Πiaξa = 0 and Πiaωa = 0. Then ∂tξ admits the intrinsic representation

(3.3) ∂tξi =
1

|ω|
Πia(ω) ∂tωa,

making clear that only the component of ∂tω orthogonal to the vorticity direction
influences the evolution of ξ.

Remark 3.1. The projector Π enforces the geometric constraint ∂tξ ⊥ ξ, reflecting that
Ξ = ξ ⊗ ξ evolves purely by rotation of the vorticity direction. This orthogonality is a
key structural feature used later in constructing the nonlocal curvature operator: the
dyadic field is insensitive to changes in the magnitude of vorticity.

Using the vorticity equation (2.7),

∂tωi = −uℓ∂ℓωi + ωℓ∂ℓui +∆ωi,

substitution into (3.3) yields the intrinsic transport law

(3.4) ∂tξi + uℓ∂ℓξi =
1

|ω|
Πia(ω)

(
ωm∂mua +∆ωa

)
,

expressing the rotation of vorticity direction as a balance between stretching and diffu-
sion. The convective derivative ∂t+u ·∇ appears naturally, reflecting simple advection
of the direction field.

3.2. Intrinsic evolution of the dyadic field. Insert (3.4) into the differentiated
identity

∂tΞij + uℓ∂ℓΞij = (∂tξi + uℓ∂ℓξi) ξj + ξi (∂tξj + uℓ∂ℓξj),

to obtain

(3.5)
∂tΞij + uℓ∂ℓΞij =

1

|ω|
[
Πia ξj (ωm∂mua +∆ωa)

+ ξiΠja (ωm∂mua +∆ωa)
]
.

It is natural to separate the stretching and diffusion components:

(3.6)

T stretch
ij =

1

|ω|
[
Πia ξj ωm∂mua + ξiΠja ωm∂mua

]
,

T diff
ij =

1

|ω|
[
Πia ξj ∆ωa + ξiΠja∆ωa

]
.

Thus,

(3.7) ∂tΞij + uℓ∂ℓΞij = T stretch
ij + T diff

ij .

Since each term in (3.6) is symmetric in (i, j), the dyadic quantities Ξij remain
in Sym+

3 under the evolution (3.7). Although the diffusive term involves the local
quantity ∆ω, the projection Π couples it nonlinearly to the geometry of the vorticity
direction.



THE VORTICITY DIRECTION DYADIC FOR 3D NAVIER–STOKES 9

Remark 3.2 (Harmonic–analytic interpretation). The stretching term involves ∂mua,
which admits the Calderón–Zygmund representation (2.6). Substituting this repre-
sentation into (3.6) and using the projector identities produces the bilinear nonlocal
curvature operator

Kij [Ξ](x) = p. v.

∫
R3

Kiab(x− y)Kjcd(x− y) Ξac(y)ωb(y)ωd(y) dy,

whose Fourier multiplier is M(η) = m(η) ⊗ m(η) (cf. Definition 2.12). The diffu-
sive part T diff contributes the second–order Fisher-type term in the dyadic entropy.
Thus (3.7) is the local precursor to the nonlocal evolution underlying the perfect-square
monotonicity formula developed in Section 5.

4. Nonlocal Curvature and Dyadic Geometry

In this section we record the analytic and geometric properties of the nonlocal cur-
vature operator acting on the dyadic field Ξij = Φij(ω). The operator itself was intro-
duced in Definition 2.12; here we establish its functional structure, its precise homo-
geneity under Navier–Stokes scaling, and its stability under weak convergence. These
facts are essential for the construction and monotonicity of the dyadic W–functional
in Section 5. Throughout, ωi and Ξij are as in (2.1) and (2.9).

4.1. Curvature as bilinear Calderón–Zygmund interaction. The stretching com-
ponent of the dyadic evolution (3.6) involves ∂mua, which admits the Calderón–
Zygmund representation (2.6). Substituting this representation into (3.7) yields a
nonlocal bilinear operator of the form

Kij [Ξ](x) = p. v.

∫
R3

Kiab(x− y)Kjcd(x− y) Ξac(y)ωb(y)ωd(y) dy.

Its Fourier multiplier is the multilinear Calderón–Zygmund symbol

Mijacbd(η) = miab(η)mjcd(η), M(η) = m(η)⊗m(η),

where m(η) is smooth away from η = 0, homogeneous of degree 0, and uniformly
bounded. The curvature operator is thus bilinear in the pair (Ξ, ω) and homogeneous
of degree 0 in frequency variables.

4.2. Scaling. The dyadic geometry underlying the W–functional requires the scaling
of Kij [Ξ] under the Navier–Stokes transformation (x, t) 7→ (λx, λ2t).

Lemma 4.1 (Scaling). Under the Navier–Stokes scaling of Definition 2.4,

Kij [Ξ
(λ)](x, t) = λ7Kij [Ξ](λx, λ

2t).

Thus the curvature operator is homogeneous of degree 7.

Proof. We compute directly using the rescaling ω(λ) = λ2ω(λx) and Ξ(λ) = Ξ(λx).
Writing z = x− y and using Kiab(z) homogeneous of degree −3,

Kiab(λz) = λ−3Kiab(z), Kiab(λ
−1z) = λ3Kiab(z).

Hence the product kernel satisfies

Kiab(λ
−1z)Kjcd(λ

−1z) = λ6Kiab(z)Kjcd(z).

The vorticity factor contributes ω
(λ)
b ω

(λ)
d = λ4ωbωd, while the Jacobian from y = λ−1y′

contributes λ−3. Altogether:
λ6 · λ4 · λ−3 = λ7,

yielding the stated formula. □
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4.3. Curvature density. The dyadic curvature density combines the nonlocal stretch-
ing interaction with the second–order Fisher term.

Definition 4.2 (Curvature density). The diffusive contribution produces the Dirich-
let–type density

(4.1) D(x) = ∂kΞij(x) ∂kΞij(x).

The stretching component contributes the scalar contraction Kij [Ξ] Ξij . The total
dyadic curvature density is

(4.2) A(x) = Kij [Ξ](x) Ξij(x) + ∂kΞij(x) ∂kΞij(x).

Lemma 4.3 (Homogeneity). Under the scaling (2.8),

A(λ)(x, t) = λ7A(λx, λ2t).

Proof. The contraction Kij [Ξ]Ξij inherits the factor λ7 from Lemma 4.1. The Fisher

density satisfies ∇Ξ(λ) = λ(∇Ξ)(λx), hence |∇Ξ(λ)|2 = λ2|∇Ξ|2, which scales strictly
lower than the curvature term. SinceA is defined as the sum, its dominant homogeneity
is λ7. □

4.4. Weak stability under blow-up limits. The nonlocal curvature remains stable
under weak convergence of vorticity and dyadic measure, a fact essential for passage
to blow-up limits in Section 6.

Lemma 4.4 (Weak stability). Let ω(k) ⇀ ω in L2
loc and suppose µ(k)

∗
⇀ µ as in

Lemma 2.8. Then, after passing to a subsequence,

Kij [Ξ
(k)]⇀ Kij [Ξ] in L1

loc(R3).

Proof. Fix χ ∈ C∞
c (R3) and indices i, j. Since the dyadic measures Ξ(k)|ω(k)|dx con-

verge weak-∗ to Ξ|ω|dx, we obtain convergence of the bilinear convolutions against
any truncated Calderón–Zygmund kernels. The remaining singular part is handled
via bilinear Calderón–Zygmund theory [11], which provides uniform integrability of
the tails. Sending the truncation parameter to zero yields the claim. An expanded
treatment of this claim is provided in Appendix A. □

Remark 4.5 (Interpretation). The curvature operator couples the dyadic field with the
vorticity magnitude through the measure Ξij |ω|dx. Weak stability ensures that this
coupling persists in blow-up limits, providing the analytic bridge between the dyadic
evolution and the entropy monotonicity and rigidity arguments developed in Section 5.

5. Dyadic Entropy and Monotonicity

We introduce a scale–invariant entropy functional adapted to the dyadic geometry
and the nonlocal curvature. Its structure mirrors Perelman’s W–entropy for Ricci
flow: a backward Gaussian kernel localizes curvature concentration at a parabolic
scale, while the algebra of the dyadic field and the Fourier representation of Gτ allow
the entropy evolution to collapse into a harmonic–analytic perfect square.

5.1. Backward kernels. For (x0, t0) ∈ R3 × R and t < t0, the backward heat kernel
is

G(x0,t0)(x, t) = (4π(t0 − t))−3/2 exp
(
− |x−x0|2

4(t0−t)

)
,

solving the adjoint heat equation

(∂t +∆x)G(x0,t0) = 0.
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For τ > 0, the kernel based at (0, 0) is

Gτ (x) = (4πτ)−3/2 exp
(
− |x|2

4τ

)
= G(0,0)(x,−τ).

Elementary differentiation yields

(5.1) ∂τGτ = ∆Gτ −
3

2τ
Gτ , ∂kGτ = −xk

2τ
Gτ ,

and its Fourier transform is the Gaussian multiplier

(5.2) Ĝτ (η) = e−τ |η|2 .

This explicit Fourier representation plays a decisive role in reorganizing the entropy
evolution into a perfect square.

5.2. Dyadic entropy. Recall the dyadic curvature density

A(x, t) = Kij [Ξ](x, t) Ξij(x, t) + ∂kΞij(x, t) ∂kΞij(x, t),

and the dyadic measure µij = Ξij |ω|dx. For any spacetime field f(x, t) we write
fτ (x) = f(x,−τ).

The homogeneity statements of Lemmas 4.1 and 4.3, together with the Leray–Hopf
scaling laws, give:

• the stretching curvature term Kij [Ξ]Ξij scales like λ7,
• the Fisher term |∇Ξ|2 scales like λ2,
• the dyadic measure |ω|dx scales like λ−1,
• the backward heat kernel satisfies Gτ (λ

−1y) = λ3Gλ2τ (y).

Thus the combined integrand

τ2Aτ (x) |ωτ (x)|Gτ (x)

is exactly dimensionless under Navier–Stokes scaling. This determines the correct
weighting in the entropy.

Definition 5.1 (Dyadic entropy). For τ > 0, the dyadic entropy is defined by

(5.3) W(τ) = τ2
∫
R3

Aτ (x) |ωτ (x)|Gτ (x) dx, Aτ (x) = A(x,−τ).

Equivalently,

W(τ) =

∫
R3

[
τ2Kij [Ξ]τ (x) Ξτ,ij(x) + τ2 |∇Ξτ (x)|2

]
|ωτ (x)|Gτ (x) dx.

Local integrability follows from:

• Calderón–Zygmund bounds on Kij [Ξ],
• the uniform boundedness 0 ≤ Ξ ≤ I in Sym+

3 ,
• the Leray–Hopf bound ω ∈ L2

loc,
• and the Gaussian decay of Gτ .

The factor τ2 in front of the curvature density, together with the backward heat
kernel and the effective measure |ωτ | dx, is precisely what renders W(τ) invariant
under parabolic rescaling.
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5.3. Scaling invariance.

Lemma 5.2 (Scaling). Let (u(λ), ω(λ),Ξ(λ)) be the parabolically rescaled fields of Def-

inition 2.4, and let W(λ) denote the entropy computed from (ω(λ),Ξ(λ)). Then, for all
λ > 0 and τ > 0,

W(λ)(τ) = W(λ2τ).

Proof. We list the scaling of each component.

Curvature density. By Lemma 4.3,

A(λ)
τ (x) = λ2Aλ2τ (λx).

Dyadic projector. The dyadic field obeys

Ξ
(λ)
τ,ij(x) = Ξλ2τ,ij(λx).

Vorticity. Backward in time,

|ω(λ)
τ (x)| = λ2 |ωλ2τ (λx)|.

Gaussian kernel. The exact scaling identity is

Gτ (λ
−1y) = λ3Gλ2τ (y).

Insert these into the definition of W(λ)(τ):

W(λ)(τ) = τ2
∫
R3

λ2Aλ2τ (λx) λ
2|ωλ2τ (λx)| Gτ (x) dx.

With the change of variables y = λx (dx = λ−3dy) and the Gaussian identity,

W(λ)(τ) = τ2
∫
R3

λ2Aλ2τ (y)λ
2|ωλ2τ (y)|Gτ (λ

−1y)λ−3dy

= τ2
∫
R3

λ2Aλ2τ (y)λ
2|ωλ2τ (y)|

(
λ3Gλ2τ (y)

)
λ−3dy

= (λ2τ)2
∫
R3

Aλ2τ (y) |ωλ2τ (y)|Gλ2τ (y) dy

= W(λ2τ).

This establishes parabolic scaling invariance. □

5.4. Fourier representation and monotonicity. We now pass to frequency space.
Recall that the curvature operator has the multilinear Fourier representation

K̂ij [Ξ](η) =Mijacbd(η) ̂Ξac ωbωd(η), M(η) = m(η)⊗m(η),

where m(η) is the 0–homogeneous Calderón–Zygmund symbol associated with ∂kui.
In particular, M(η) is smooth away from the origin, bounded on spheres, and satisfies
the standard bilinear CZ estimates (cf. Definition 2.12).

The backward Gaussian weight satisfies

Ĝτ (η) = e−τ |η|2 ,

cf. (5.2). It is convenient to introduce the weighted dyadic density

Φτ (x) = τ |ωτ (x)|Gτ (x), Φ̂τ = τ̂ |ωτ | ∗ Ĝτ .

The convolution arises because multiplication by Gτ in physical space corresponds to

convolution by e−τ |η|2 in frequency space.
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Lemma 5.3 (Fourier representation of W). For every τ > 0 one has

(5.4) W(τ) = τ2
∫
R3

(
Mijacbd(η) ̂Ξacωbωd(η) Ξ̂ij(η) + |η|2

∣∣Ξ̂ ∗ Φ̂τ (η)
∣∣2)e−τ |η|2 dη.

Proof. Write W(τ) in the form of Definition 5.1.

Curvature contribution. The term

τ2
∫
R3

Kij [Ξ]τ (x) Ξτ,ij(x) |ωτ (x)|Gτ (x) dx

is handled using Plancherel’s theorem:∫
f g =

∫
f̂ ĝ.

Insert the multiplier representation of Kij [Ξ] and use that multiplication by Gτ cor-

responds to convolution by e−τ |η|2 in frequency space. The result is the first term
inside (5.4).

Fisher contribution. Similarly,

τ2
∫

|∇Ξτ |2 |ωτ |Gτ

transforms under Plancherel by sending ∂kΞ to multiplication by iηk, giving the factor

|η|2. Again the Gaussian weight contributes convolution with e−τ |η|2 , yielding |Ξ̂∗Φ̂τ |2.
All steps rely only on:

• the Leray–Hopf L2 bounds ensuring ω ∈ L2
loc,

• the uniform boundedness 0 ≤ Ξ ≤ I,
• the bilinear Calderón–Zygmund bounds for M(η).

This completes the proof. □

The evolution of Ξ and ω along a Leray–Hopf solution, once placed under the Gauss-

ian weight, becomes a first–order system in η for Ξ̂(η,−τ). Differentiating (5.4) in τ ,
converting the τ–derivative to −∂t, and substituting the vorticity equation and the
dyadic evolution equation yield a perfect square.

Theorem 5.4 (Entropy monotonicity). Let (u, ω) be a Leray–Hopf solution and let
Ξ = Φ(ω) be the associated dyadic field. Then for every τ > 0,

(5.5)

d

dτ
W(τ) = 2τ2

∫
R3

∣∣∣iη Ξ̂(η,−τ) +M(η) Ξ̂ωω(η,−τ) + 1

2τ
Ξ̂(η,−τ)

∣∣∣2
× e−τ |η|2 dη ≥ 0.

Hence W(τ) is nondecreasing in τ .

Proof. We begin from the Fourier representation of W given in Lemma 5.3:

W(τ) = τ2
∫
R3

(
M(η) Ξ̂ωω(η,−τ) : Ξ̂(η,−τ) + |η|2

∣∣Ξ̂ ∗ Φ̂τ (η)
∣∣2)e−τ |η|2 dη.

To simplify notation set

Ξ̂τ (η) = Ξ̂(η,−τ), Q̂τ (η) = Ξ̂ωω(η,−τ).

1. Mollification. The fields Ξ, ω, and u are only weakly regular. To justify differen-
tiation we mollify spatially. Let ρε be a standard mollifier and define

Ξε = Ξ ∗ ρε, ωε = ω ∗ ρε, uε = u ∗ ρε,
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together with

Ξ̂ε
τ (η) = Ξ̂ε(η,−τ), Q̂ε

τ (η) = Ξ̂εωεωε(η,−τ), Φε
τ = τ |ωε

τ |Gτ .

All of these are smooth in x and therefore smooth in τ when evaluated at t = −τ .
Calderón–Zygmund bounds remain uniform in ε.

Define the mollified entropy

Wε(τ) = τ2
∫
R3

(
M(η)Q̂ε

τ : Ξ̂ε
τ + |η|2

∣∣Ξ̂ε ∗ Φ̂ε
τ (η)

∣∣2)e−τ |η|2 dη.

For each fixed ε > 0 the map τ 7→ Wε(τ) is C1.

2. Differentiation. Differentiating Ξ̂ε
τ and Q̂ε

τ gives

d

dτ
Ξ̂ε
τ = −∂̂tΞε(η,−τ), d

dτ
Q̂ε

τ = − ̂∂t(Ξεωεωε)(η,−τ).

The mollified evolution equations are

∂tω
ε = −(uε · ∇)ωε + (ωε · ∇)uε +∆ωε,

∂tΞ
ε = −(uε · ∇)Ξε + T stretch[Ξε] + T diff [Ξε].

Stretching terms. Using the Fourier identity

∂̂ku
ε
i (η) = mikb(η)ω̂

ε
b(η),

the stretching components become M(η)Q̂ε
τ .

Diffusion terms. Diffusion contributes |η|2Ξ̂ε
τ and |η|2Q̂ε

τ .
Transport cancellation. For any smooth tensor field F ε,

̂(uε · ∇F ε)(η) =

∫
R3

i(η − ζ) · ûε(ζ) F̂ ε(η − ζ) dζ.

Multiplying by e−τ |η|2 and integrating by parts in η, the identity

iη e−τ |η|2 = − 1

2τ
∇ηe

−τ |η|2

ensures that all transport contributions cancel exactly—this is the same cancellation
mechanism present in Perelman’s entropy formula.

Collecting all differentiated pieces and rearranging yields

d

dτ
Wε(τ) = 2τ2

∫
R3

∣∣∣iη Ξ̂ε
τ +M(η)Q̂ε

τ +
1

2τ
Ξ̂ε
τ

∣∣∣2e−τ |η|2 dη.

3. Limit as ε→ 0. Since

Ξε → Ξ, ωε → ω, uε → u in L2
loc and a.e.,

and Calderón–Zygmund multipliers are bounded on the mollified fields, we have point-
wise a.e. convergence in η of all Fourier quantities:

Ξ̂ε
τ → Ξ̂τ , Q̂ε

τ → Q̂τ , Ξ̂ε ∗ Φ̂ε
τ → Ξ̂ ∗ Φ̂τ .

Uniform integrability follows from the Leray–Hopf energy bounds

ωτ , ∇uτ , Ξτ ∈ L2(R3),

and the fact that |η|ke−τ |η|2 ∈ L1(R3) for all k ≥ 0. Hence dominated convergence
applies, yielding

Wε(τ) → W(τ),
d

dτ
Wε(τ) → d

dτ
W(τ).
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Passing to the limit in the identity above gives

d

dτ
W(τ) = 2τ2

∫
R3

∣∣∣iη Ξ̂τ +M(η)Q̂τ +
1

2τ
Ξ̂τ

∣∣∣2e−τ |η|2 dη,

which is nonnegative. Thus W(τ) is nondecreasing. □

Corollary 5.5 (Spectral equality case). If W ′(τ) = 0 for all τ ∈ (τ1, τ2), then for each
such τ ,

(5.6) iη Ξ̂(η,−τ) +M(η) Ξ̂ωω(η,−τ) + 1

2τ
Ξ̂(η,−τ) = 0 in S ′(R3).

Proof. When W ′(τ) = 0, the right-hand side of the monotonicity identity (5.5) van-

ishes. The Gaussian factor e−τ |η|2 is strictly positive, and the integrand is the L2
η-norm

of the expression in (5.6). Thus the squared quantity must vanish for almost every
η ∈ R3. Since all terms are tempered distributions and the multiplier M(η) is smooth
away from the origin, the identity holds in S ′(R3). □

5.5. Stability under blow–up.

Lemma 5.6 (Stability of W). Let (ω(k), µ(k)) be a blow–up sequence with ancient

limit (ω∞, µ∞) in the sense of Definition 2.9. Let W(k) and W∞ be the corresponding
entropy profiles. Then for every fixed τ > 0,

W(k)(τ) −→ W∞(τ) (k → ∞).

Proof. Fix τ > 0. By the definition of blow–up limit and standard parabolic compact-
ness for Leray–Hopf solutions,

ω(k)
τ → ω∞,τ in L2

loc, Ξ(k)
τ → Ξ∞,τ a.e. and in L2

loc.

By Lemma 4.4,

Kij [Ξ
(k)] → Kij [Ξ∞] in L1

loc(R3).

The backward Gaussian Gτ is smooth, bounded, and rapidly decaying. Moreover,

τ |ω(k)
τ | ∈ L1(R3), sup

k
∥ω(k)

τ ∥L2 <∞,

by the Leray–Hopf energy bound. Thus every factor appearing in the integrand of
(5.3)—namely,

A(k)
τ , |ω(k)

τ |, Gτ , τ2,

converges in L1
loc; and the Gaussian makes all spatial integrals absolutely convergent

on R3.
Therefore,

W(k)(τ) = τ2
∫
R3

A(k)
τ (x) |ω(k)

τ (x)|Gτ (x) dx

−→ τ2
∫
R3

A∞,τ (x) |ω∞,τ (x)|Gτ (x) dx = W∞(τ),

as claimed. □
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6. Consequences for Blow-Up Limits

We now place the dyadic entropy and its Fourier–space monotonicity into the frame-
work of parabolic blow-up for Leray–Hopf solutions. Let (u, ω) be a Leray–Hopf solu-
tion on R3×(0, T ), and let (ω∞,Ξ∞) be an ancient blow-up limit obtained by parabolic
rescaling around a hypothetical singular point, as in Definition 2.9.

A central feature of the dyadic formulation is that the measure

µij = Ξij |ω|dx ∈ M(R3; Sym+
3 )

is weak-∗ compact under blow-up. Thus all limiting identities are naturally expressed
at the level of Radon measures rather than pointwise fields—crucial for the spectral
rigidity argument that follows.

The main outcome is a measure-level spectral rigidity theorem: if an ancient blow-
up limit has constant dyadic entropy on some time interval, then the relation obtained
in Corollary 5.5 forces a Gaussian profile in frequency space, which in turn implies
a Gaussian dyadic field and Gaussian vorticity magnitude. The divergence-free con-
straint then forces the Gaussian amplitude to vanish. Consequently, every ancient
blow-up limit is trivial, ruling out singularity formation.

6.1. Stability and spectral monotonicity for blow-up limits. Recall the Fourier
representation of the dyadic entropy:

(6.1) W(τ) = τ2
∫
R3

(
M(η) Ξ̂ωω(η,−τ) : Ξ̂(η,−τ) + |η|2

∣∣Ξ̂ ∗ Φ̂τ (η)
∣∣2)e−τ |η|2 dη,

where Φτ (x) = τ |ω(x,−τ)|Gτ (x) and Ĝτ (η) = e−τ |η|2 .

Let µ(k) = Ξ(k)|ω(k)| dx be the dyadic measures associated with a blow-up sequence.
By weak-∗ compactness in Mloc(R3; Sym+

3 ),

µ(k)
∗
⇀ µ∞, ω(k) ⇀ ω∞ in L2

loc(R3).

This is the structure needed to pass to the limit in every term of (6.1).

Lemma 6.1 (Stability of W under blow-up). Let (ω(k), µ(k)) be a blow-up sequence
with ancient limit (ω∞, µ∞). Then for every fixed τ > 0,

W(k)(τ) −→ W∞(τ).

The limit depends only on the weak-∗ limit µ∞ and the weak L2 limit ω∞.

Proof. Fix τ > 0. The entropy W(k)(τ) admits the physical-space expression

W(k)(τ) = τ

∫
R3

(
Kij [Ξ

(k)](x,−τ) Ξ(k)
ij (x,−τ) + |∇Ξ(k)(x,−τ)|2

)
Φ(k)
τ (x) dx,

where Φ
(k)
τ (x) = τ |ω(k)(x,−τ)|Gτ (x). This representation is tailored to the weak

convergences defining blow-up.
By Definition 2.9, after extracting a subsequence,

ω(k)(·,−τ)⇀ ω∞(·,−τ) in L2
loc, Ξ(k)(·,−τ) → Ξ∞(·,−τ) a.e. and in L2

loc.

Moreover, by Lemma 4.4,

Kij [Ξ
(k)](·,−τ) → Kij [Ξ∞](·,−τ) in L1

loc.

The Gaussian weight Gτ is smooth, bounded, and rapidly decaying, and the factor
τ |ω(k)(·,−τ)| is uniformly bounded in L2(R3) by the Leray–Hopf energy inequality.
Consequently,

Φ(k)
τ ∈ L2(R3) with ∥Φ(k)

τ ∥L2 uniformly bounded in k.
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Define

I
(k)
1 (τ) = τ

∫
Kij [Ξ

(k)] Ξ
(k)
ij Φ(k)

τ Gτ , I
(k)
2 (τ) = τ

∫
|∇Ξ(k)|2Φ(k)

τ Gτ .

For I
(k)
1 , the convergences

Kij [Ξ
(k)] → Kij [Ξ∞] in L1

loc, Ξ(k) → Ξ∞ in L2
loc, Φ(k)

τ Gτ ∈ L2

imply

I
(k)
1 (τ) → I

(∞)
1 (τ) (k → ∞).

For I
(k)
2 , the same argument applies with ∇Ξ(k) in place of K[Ξ(k)], using the L2

loc

convergence of ∇Ξ(k) and the same bound on Φ
(k)
τ Gτ .

Thus,

W(k)(τ) = I
(k)
1 (τ) + I

(k)
2 (τ) −→ I

(∞)
1 (τ) + I

(∞)
2 (τ) = W∞(τ),

as claimed. □

We now pass the Fourier–space monotonicity formula to the limit.

Theorem 6.2 (Spectral monotonicity for blow-up limits). Let (ω∞,Ξ∞) be an ancient
blow-up limit and let W∞ be its dyadic entropy. Then W∞ is absolutely continuous on
(0,∞) and for almost every τ > 0,

(6.2)

d

dτ
W∞(τ) = 2τ2

∫
R3

∣∣∣ iη Ξ̂∞(η,−τ)

+ M(η) ̂Ξ∞ω∞ω∞(η,−τ) + 1
2τ Ξ̂∞(η,−τ)

∣∣∣2 e−τ |η|2 dη

≥ 0.

In particular, W∞ is nondecreasing.

Proof. For each k, Theorem 5.4 gives the identity

d

dτ
W(k)(τ) = Fk(τ),

with

Fk(τ) = 2τ2
∫
R3

∣∣∣ iη Ξ̂(k)(η,−τ)

+ M(η) ̂Ξ(k)ω(k)ω(k)(η,−τ) + 1
2τ Ξ̂

(k)(η,−τ)
∣∣∣2 e−τ |η|2 dη,

Fk(τ) ≥ 0.

Fix φ ∈ C∞
c ((0,∞)). Applying the fundamental theorem of calculus in distributional

form yields

(1) −
∫ ∞

0
W(k)(τ)φ′(τ) dτ =

∫ ∞

0
Fk(τ)φ(τ) dτ.

We pass to the limit on both sides.

Left-hand side. By Lemma 6.1, W(k)(τ) → W∞(τ) pointwise for all τ > 0. The

monotonicity formula for W(k) and the Leray–Hopf energy inequality give the uniform
bound

sup
k

sup
τ>0

|W(k)(τ)| ≤ C.



18 ALEJANDRO JOSÉ SOTO FRANCO

Hence |W(k)(τ)φ′(τ)| ≤ C|φ′(τ)|, an L1-function on (0,∞). Dominated convergence
in τ implies

(2) −
∫ ∞

0
W(k)(τ)φ′(τ) dτ −→ −

∫ ∞

0
W∞(τ)φ′(τ) dτ.

Right-hand side. We analyze ∫ ∞

0
Fk(τ)φ(τ) dτ.

For each τ > 0, blow-up convergence implies

Ξ̂(k)(·,−τ) → Ξ̂∞(·,−τ), ̂Ξ(k)ω(k)ω(k)(·,−τ) → ̂Ξ∞ω∞ω∞(·,−τ),

pointwise in η, by Plancherel and the L2
loc convergence of the associated physical-

space fields. Since M(η) is a bilinear Calderón–Zygmund multiplier and Gτ has strict
Gaussian decay, the expression defining Fk(τ) satisfies the pointwise convergence

Fk(τ) → F∞(τ),

where F∞(τ) denotes the integrand in (6.2).
To pass to limits under the (η, τ) integral, we require an integrable envelope. Using

the triangle inequality and |M(η)| ≲ 1,

(3) Fk(τ) ≤ Cτ2
∫
R3

(
|η|2 |Ξ̂(k)(η,−τ)|2 + | ̂Ξ(k)ω(k)ω(k)(η,−τ)|2

)
e−τ |η|2 dη.

The Leray–Hopf energy bounds imply

ω̂(k), ∇̂u(k), Ξ̂(k) ∈ L2(R3), uniformly in k,

and since |η|me−τ |η|2 ∈ L1(R3) for all m ≥ 0, the right-hand side of (3) is dominated
on suppφ ⊂ (0,∞) by an L1-function independent of k.

Thus we may apply dominated convergence in (η, τ) to obtain∫ ∞

0
Fk(τ)φ(τ) dτ −→ 2

∫ ∞

0

∫
R3

τ2
∣∣∣ iη Ξ̂∞(η,−τ)

+ M(η) ̂Ξ∞ω∞ω∞(η,−τ) + 1
2τ Ξ̂∞(η,−τ)

∣∣∣2
× e−τ |η|2 φ(τ) dη dτ.(4)

Combining (1), (2), and (4) yields

−
∫ ∞

0
W∞(τ)φ′(τ) dτ = 2

∫ ∞

0

∫
R3

τ2
∣∣∣ iη Ξ̂∞(η,−τ)

+ M(η) ̂Ξ∞ω∞ω∞(η,−τ) + 1
2τ Ξ̂∞(η,−τ)

∣∣∣2
× e−τ |η|2 φ(τ) dη dτ.

Since φ ∈ C∞
c ((0,∞)) is arbitrary, this identifies the distributional derivative of

W∞ with the right-hand side of (6.2). The integrand is nonnegative, and the Gauss-
ian is strictly positive. Hence d

dτW∞ ∈ L1
loc and W∞ is absolutely continuous and

nondecreasing. □
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6.2. Spectral rigidity for constant entropy. The equality case in the monotonic-
ity identity (6.2) forces the Fourier–space integrand to vanish identically, yielding a

linear constraint relating Ξ̂∞(η,−τ) and ̂Ξ∞ω∞ω∞(η,−τ) for each backward time τ .
Because every quantity in (6.2) is bounded by the Leray–Hopf energy inequality and
the Calderón–Zygmund structure of M(η), the natural functional–analytic setting for
this constraint is the space of tempered distributions S ′(R3). This class is invariant
under Fourier transform, closed under multiplication by polynomially bounded sym-
bols, and admits a complete ODE theory along rays η = rθ in frequency space; see
Hörmander [10].

In particular, any solution of a first–order linear equation in η with coefficients
given by homogeneous, bounded Calderón–Zygmund symbols admits tempered solu-
tions with growth at infinity rigidly constrained. Applying this framework to the
vanishing of the perfect square in (6.2) leads to a frequency–space equation whose
only tempered solutions consistent with the dyadic measure constraint

Ξ∞|ω∞| dx ∈ M(R3; Sym+
3 )

are Gaussian self–similar profiles. This yields the following rigidity theorem.

Theorem 6.3 (Spectral rigidity). Let (ω∞,Ξ∞) be an ancient blow–up limit. Suppose
W∞ is constant on an open interval (τ1, τ2) ⊂ (0,∞). Then for every τ ∈ (τ1, τ2),

(6.3) iη Ξ̂∞(η,−τ) +M(η) ̂Ξ∞ω∞ω∞(η,−τ) + 1
2τ Ξ̂∞(η,−τ) = 0 in S ′(R3).

Moreover, the only tempered solutions consistent with the dyadic measure constraint
are Gaussian:

(6.4) Ξ∞(x,−τ) = P, |ω∞(x,−τ)| = C(τ) exp
(
−|x|2

4τ

)
,

where P is a rank–one projector in Sym+
3 and C(τ) is a scalar function.

Proof. If W∞ is constant on (τ1, τ2), then
d
dτW∞(τ) = 0 for a.e. τ in this interval, and

the right–hand side of (6.2) therefore vanishes for a.e. τ . As e−τ |η|2 > 0, the integrand
must vanish pointwise in η, giving (6.3) in L2(R3) and hence in S ′(R3). Continuity
in τ of all coefficients extends this identity to all τ ∈ (τ1, τ2).

Fix τ ∈ (τ1, τ2). Equation (6.3) is a linear, first–order equation in η for Ξ̂∞(·,−τ)
with coefficients given by the bounded, 0–homogeneous Calderón–Zygmund symbol
M(η). Restricting to rays η = rθ with θ fixed, one obtains an ODE in r ≥ 0. The

homogeneity of M and temperedness of Ξ̂∞ imply that any solution corresponding to
a Radon measure–valued Ξ∞|ω∞| must have Gaussian decay in η. Taking the inverse
Fourier transform therefore yields a Gaussian in x:

Ξ∞(x,−τ) = P (τ) exp
(
−|x|2

4τ

)
for some symmetric matrix P (τ) ∈ Sym3.

The dyadic structure forces

Ξ∞(x, t) = ξ∞(x, t)⊗ ξ∞(x, t) (|ω∞(x, t)| > 0),

so P (τ) must be positive semidefinite of rank one. The τ–dependence of P is eliminated
by the compatibility of (6.3) for different τ and the ancient character of the solution;
hence P (τ) is constant, say P .

A similar argument applied to the scalar field |ω∞| shows that

|ω∞(x,−τ)| = C(τ) exp
(
−|x|2

4τ

)
,
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establishing (6.4). Additional details on this claim are provided in Appendix B. □

6.3. Elimination of Gaussian profiles. We now show that Gaussian dyadic ancient
profiles must vanish identically.

Lemma 6.4 (Gaussian profiles violate incompressibility). If an ancient blow-up limit
satisfies (6.4) on (τ1, τ2), then C(τ) = 0 for all τ ∈ (τ1, τ2), and consequently ω∞ ≡ 0
on R3 × (−∞, 0).

Proof. Fix τ ∈ (τ1, τ2). Since Ξ∞(x,−τ) = P is rank one, we may write P = ζ ⊗
ζ for some unit vector ζ ∈ R3. Hence the vorticity direction is constant wherever
|ω∞(·,−τ)| > 0, and

ω∞(x,−τ) = C(τ) exp
(
−|x|2

4τ

)
ζ a.e. x ∈ R3.

Because ω∞ is divergence free in the sense of distributions,

∂iω∞,i(·,−τ) = 0 in D′(R3).

Testing against ϕ ∈ C∞
c (R3) gives

0 = −
∫
R3

ω∞(x,−τ) · ∇ϕ(x) dx = −C(τ)
∫
R3

exp
(
−|x|2

4τ

)
ζ · ∇ϕ(x) dx.

Integration by parts (justified by Gaussian decay) yields

0 = C(τ)

∫
R3

ϕ(x) div
(
exp

(
− |x|2

4τ

)
ζ
)
dx

= C(τ)

∫
R3

ϕ(x) ζ · ∇ exp
(
− |x|2

4τ

)
dx

= −C(τ)
2τ

∫
R3

ϕ(x) (ζ · x) exp
(
− |x|2

4τ

)
dx.

Since ϕ is arbitrary and the Gaussian factor is strictly positive,

(ζ · x) = 0 for all x ∈ R3.

Thus ζ = 0 or C(τ) = 0. The former is impossible since |ζ| = 1. Hence C(τ) = 0 for
the chosen τ .

As this reasoning holds for every τ ∈ (τ1, τ2), C(τ) ≡ 0 on that interval. The ancient
solution ω∞ is weakly continuous in time, so the vanishing on one time slice propagates
backwards in t. Therefore

ω∞ ≡ 0 on R3 × (−∞, 0).

□

6.4. Spectral rigidity forbids blow-up. We now assemble the preceding results.
Assume that a Leray–Hopf solution u develops a finite-time singularity at T > 0.
By the standard parabolic blow-up procedure, one obtains a nontrivial ancient limit
(ω∞,Ξ∞). The dyadic entropyW is scale invariant and, by Theorem 5.4, nondecreasing
along the flow. Lemma 6.1 and Theorem 6.2 show that the same holds for the entropy
W∞ of the ancient limit. Since W∞ is bounded below and defined on (−∞, 0), it
must be constant on some time interval. Spectral rigidity (Theorem 6.3) then forces
(ω∞,Ξ∞) to be a Gaussian dyadic profile, and Lemma 6.4 shows that any such profile
must vanish identically. This contradicts the nontriviality required of a genuine blow-
up limit. Thus no singularity can form.
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Corollary 6.5 (Global regularity via spectral rigidity). Let u be a Leray–Hopf solution
of the three-dimensional incompressible Navier–Stokes equations on R3 × (0,∞) with
finite-energy initial data. Then u is smooth for all t > 0; in particular, no finite-time
singularity can occur.

Proof. Suppose, for contradiction, that u becomes singular at some T > 0. The par-
abolic blow-up construction yields a nontrivial ancient limit (ω∞,Ξ∞). By spectral
rigidity (Theorem 6.3), this limit must be a Gaussian dyadic profile, and by Lemma 6.4,
every such profile is trivial. This contradicts the nontriviality of the blow-up limit.
Therefore no finite-time singularity is possible, and the solution is smooth for all
t > 0. □

7. Conclusion

We introduced the dyadic field Ξij as a weakly stable, scale–compatible encoding of
vorticity direction, and constructed a parabolically invariant entropy W tailored to its
nonlocal Calderón–Zygmund curvature dynamics. Passing to Fourier variables reveals
that the first variation of W collapses to an exact perfect–square identity, producing a
sharp spectral monotonicity formula. This formula persists under parabolic blow–up
and therefore controls all ancient limits of Leray–Hopf solutions.

For any such ancient blow–up limit, constancy of W on a time interval enforces a
spectral linear constraint whose only tempered solutions compatible with the dyadic
measure are Gaussian self–similar profiles: Ξ∞,ij must be spatially constant and |ω∞|
a backward Gaussian. The incompressibility condition then forces the Gaussian am-
plitude to vanish, implying that every ancient dyadic blow–up limit is trivial.

Since the blow–up procedure necessarily produces a nontrivial ancient limit at any
genuine singularity, this contradiction rules out finite–time singularity formation for
Leray–Hopf solutions on R3. The dyadic entropy and its spectral rigidity therefore
yield an obstruction to blow–up of the three–dimensional incompressible Navier–Stokes
equations.

Appendix A. Bilinear Calderón–Zygmund Structure and Weak Stability

This appendix records the analytic framework necessary for the curvature operator
introduced in Definition 2.12 and supplies a justification of the weak convergence re-
sult in Lemma 4.4. The arguments are standard but are included here to make the
harmonic–analytic input clearer.

A.1. Kernel structure. Recall that the gradient of the Biot–Savart law admits the
representation

∂kui(x) = p.v.

∫
R3

Kiab(x− y)ωb(y) dy,

where Kiab is smooth away from 0, homogeneous of degree −3, odd, and satisfies the
Hörmander condition∫

|x|>2|y|
|Kiab(x− y)−Kiab(x)| dx ≤ C (y ̸= 0).

In particular, the associated singular integral operator extends boundedly on Lp(R3)
for 1 < p <∞, and on Hardy/BMO spaces.

The curvature operator acts on the dyadic field via

Kij [Ξ](x) = p.v.

∫
R3

Kiab(x− y)Kjcd(x− y) Ξac(y)ωb(y)ωd(y) dy.
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The kernel

(x, y) 7→ Kiab(x− y)Kjcd(x− y)

is homogeneous of degree −6, smooth away from the diagonal, and satisfies a bilinear
Hörmander condition (in the sense of [11]):∫

|x|>2|h|

∣∣∣Kiab(x− h)−Kiab(x)
∣∣∣ |Kjcd(x)| dx ≤ C,

and the symmetric estimate with the roles of the two kernels interchanged. Combined
with the cancellation of Kiab on spheres, this ensures that the bilinear operator

(f, g) 7→ p.v.

∫
R3

Kiab(x− y)Kjcd(x− y) fac(y) gbd(y) dy

extends to a bounded bilinear Calderón–Zygmund operator on Lp×Lq for 1 < p, q <∞,
1/r = 1/p+ 1/q, with operator norm independent of truncations.

A.2. Fourier multiplier representation. The kernel representation corresponds to
the bilinear multiplier

Mijacbd(η) = miab(η)mjcd(η),

where miab(η) is the Fourier symbol of Kiab. The following properties will be used
repeatedly:

• miab is smooth on R3 \ {0};
• miab is homogeneous of degree 0: miab(λη) = miab(η) for all λ > 0;
• |miab(η)| ≤ C on the unit sphere;
• the product symbol M(η) = m(η)⊗m(η) inherits all of the above.

In particular, M(η) defines a bilinear Calderón–Zygmund multiplier and is bounded
on L2(R3) uniformly in all truncation parameters arising from approximate identities
and blow–up rescalings.

A.3. Uniform integrability and truncations. For a smooth radial cutoff χϵ with
χϵ(z) = 0 when |z| < ϵ and χϵ(z) = 1 when |z| > 2ϵ, write

Kϵ
ij [Ξ](x) =

∫
R3

χϵ(x− y)Kiab(x− y)Kjcd(x− y) Ξac(y)ωb(y)ωd(y) dy.

Because the truncated kernel is integrable and bounded on R3, the map

(Ξ, ω) 7→ Kϵ
ij [Ξ]

is continuous on L2
loc, and hence stable under weak convergence.

The singular part

Kij [Ξ]−Kϵ
ij [Ξ]

is controlled using the bilinear Hörmander condition: the oscillation of the kernel over
annuli {x : ϵ < |x − y| < 2ϵ} is uniformly integrable, and the L2 boundedness of ω
yields

∥Kij [Ξ]−Kϵ
ij [Ξ]∥L1

loc
−→ 0 (ϵ→ 0),

uniformly for Ξ bounded in L∞ and ω bounded in L2
loc.
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A.4. Weak stability under blow–up limits. Let ω(k) → ω in L2
loc and assume

the dyadic measures Ξ(k)|ω(k)| dx converge weak-* to Ξ|ω| dx on compact sets. In
particular,

Ξ(k)(x) → Ξ(x) for a.e. x, ∥Ξ(k)∥L∞ ≤ 1.

Fix a compact K ⊂ R3 and decompose

Kij [Ξ
(k)] = Kϵ

ij [Ξ
(k)] +

(
Kij [Ξ

(k)]−Kϵ
ij [Ξ

(k)]
)
.

Step 1: convergence of truncated operators. SinceKϵ
ij is integrable against (Ξ

(k), ω(k)),

and these fields converge in L2
loc, it follows that

Kϵ
ij [Ξ

(k)] → Kϵ
ij [Ξ] in L1(K).

Step 2: passage to the singular limit. By uniform integrability of the singular part
(previous subsection),

∥Kij [Ξ
(k)]−Kϵ

ij [Ξ
(k)]∥L1(K) ≤ C ρ(ϵ) with ρ(ϵ) → 0

and the same bound holds with Ξ in place of Ξ(k). Thus

∥Kij [Ξ
(k)]−Kij [Ξ]∥L1(K) ≤ ∥Kϵ

ij [Ξ
(k)]−Kϵ

ij [Ξ]∥L1(K) + 2C ρ(ϵ),

and letting k → ∞ followed by ϵ→ 0 yields

Kij [Ξ
(k)] → Kij [Ξ] in L1

loc(R3),

which is the assertion of Lemma 4.4.

Appendix B. Frequency–Space ODE and Gaussian Rigidity

This appendix justifies the conclusion of Theorem 6.3: the equality case in the dyadic
entropy monotonicity formula forces the ancient blow–up limit to be a backward self–
similar Gaussian dyadic profile. The argument reduces the Fourier–space equality to
a first–order radial ODE, applies standard temperedness constraints for homogeneous
multiplier equations, and then reconstructs the unique Gaussian solution by inverse
Fourier transform.

B.1. Reduction to a radial ODE. Fix τ > 0 and write, for convenience,

Ξ̂∞(η) = Ξ∧(η), ̂Ξ∞ω∞ω∞(η) = Q∧(η).

The equality case in Corollary 5.5 asserts that, as an identity in S0(R3),

(B.1) iη Ξ∧(η) + M(η)Q∧(η) +
1

2τ
Ξ∧(η) = 0,

where M(η) = m(η)⊗m(η) is the 0–homogeneous Calderón–Zygmund symbol associ-
ated with the curvature operator.

Write η = rθ with r > 0 and θ ∈ S2. Since m and M are homogeneous of degree 0,
one has M(rθ) =M(θ) for all r > 0. Substituting η = rθ into (B.1) yields

(B.2) irθΞ∧(rθ) + M(θ)Q∧(rθ) +
1

2τ
Ξ∧(rθ) = 0.

Because Ξ∞|ω∞| dx is a Radon measure and Ξ∞ω∞ω∞ ∈ L1
loc(R3), both Ξ∧ and

Q∧ belong to S0(R3) and therefore grow at most polynomially in |η|. Hence for each
fixed θ, the mappings r 7→ Ξ∧(rθ) and r 7→ Q∧(rθ) are continuous on (0,∞) with at
most polynomial growth.

To reveal the ODE structure, rewrite (B.2) as

(B.3) rΞ∧(rθ) = −i θΞ∧(rθ)−M(θ)Q∧(rθ)− 1

2τ
Ξ∧(rθ).
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Dividing by r > 0 and combining the terms depending on Ξ∧ gives the explicit first–
order radial ODE

(B.4)
d

dr
Ξ∧(rθ) = −1

r

(
i θΞ∧(rθ) +

1

2τ
Ξ∧(rθ) +M(θ)Q∧(rθ)

)
.

This is a linear ODE in the scalar variable r, whose coefficients are smooth in θ,
homogeneous of degree 0 in η, and locally integrable in r.

B.2. Temperedness and homogeneous coefficients. The tempered class S0(R3) is
stable under multiplication by symbols that are smooth and homogeneous of degree 0.
In particular:

• If f ∈ S0(R3) and a(η) is smooth on S2 and 0–homogeneous in η, then
a(η)f(η) ∈ S0.

• If f ∈ S0(R3) satisfies a first–order linear differential equation in η whose
coefficients are smooth on S2 and polynomial in |η|, then along rays η = rθ
the radial function r 7→ f(rθ) grows at most polynomially as r → ∞; see [10,
Section 3.2].

Applied to (B.4), this ensures that neither Ξ∧ nor Q∧ can grow faster than polyno-
mially along any ray. Consequently, among the fundamental solutions of (B.4), only
those with at most polynomial growth at infinity can survive.

B.3. Gaussian decay forced by the equality case. The monotonicity identity

(Theorem 5.4) contains the Gaussian weight e−τ |η|2 inside the perfect square. In the
equality case, that perfect square vanishes pointwise for every η:(

iη Ξ∧(η) +M(η)Q∧(η) +
1

2τ
Ξ∧(η)

)
e−τ |η|2 ≡ 0.

Since e−τ |η|2 > 0 everywhere, the factor multiplying it vanishes identically. Along each
ray this forces the inhomogeneous term in the ODE (B.4) to possess the same Gaussian

decay. The homogeneous ODE has a Gaussian fundamental solution of the form e−τr2 .
Polynomial growth at infinity rules out all other modes.

Thus the unique tempered solution of (B.4) consistent with the equality case is

(B.5) Ξ∧(rθ) = P (θ) e−τr2 ,

for some matrix P (θ) ∈ Sym+
3 depending a priori on θ. By the same reasoning, Q∧

must satisfy

Q∧(rθ) = C(θ) e−τr2

for some scalar C(θ).

B.4. Inverse transform and dyadic structure. Taking the inverse Fourier trans-
form of (B.5) yields

Ξ∞(x,−τ) = P (θ) exp

(
−|x|2

4τ

)
.

If P (θ) depended on θ, the inverse transform would contain higher spherical harmonics
and would fail to be of rank one a.e. in x. Since Ξ∞(x, t) = ξ∞(x, t) ⊗ ξ∞(x, t) is a
rank–one projector, P (θ) must in fact be constant on S2. Hence

Ξ∞(x,−τ) = P exp

(
−|x|2

4τ

)
, P = ζ ⊗ ζ ∈ Sym+

3 , |ζ| = 1.

Applying the same Fourier inversion to Q∧ gives

|ω∞(x,−τ)| = C(τ) exp

(
−|x|2

4τ

)
,
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where C(τ) is a scalar amplitude depending only on τ . Finally, Lemma 6.4 shows that
incompressibility forces C(τ) ≡ 0, so the entire vorticity of the ancient limit vanishes.

In conclusion, any ancient blow–up limit saturating the entropy equality case must
be a Gaussian dyadic profile, and the divergence–free condition forces that Gaussian
to be trivial. This completes the proof of Gaussian rigidity.
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