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THE VORTICITY DIRECTION DYADIC FOR THE
THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS

ALEJANDRO JOSE SOTO FRANCO

ABSTRACT. We analyze the incompressible Navier-Stokes equations on R® through
the vorticity direction dyadic =2 = £ ® £ and an associated scale—invariant entropy
that couples its nonlocal Calderén-Zygmund curvature with a Fisher-type term.
Using a harmonic—analytic representation of the curvature operator, we establish a
monotone expression for this entropy in Fourier space. For any parabolic blow-up
sequence of a Leray—Hopf solution, the entropy passes to the ancient limit and the
equality case in the monotonicity formula yields a linear frequency—space relation
whose tempered solutions are Gaussian self-similar profiles. Such Gaussian dyadic
profiles are incompatible with the divergence-free structure, the Biot—Savart decay,
and the Leray—Hopf energy inequality, and hence any ancient blow-up limit must
be trivial. This furnishes a geometric-harmonic spectral rigidity mechanism that
precludes nontrivial blow-up limits for Leray—Hopf solutions on R®.
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1. INTRODUCTION

Nearly two centuries after their formulation, the global regularity problem for the
three-dimensional incompressible Navier—Stokes equations remains open . Leray-—
Hopf weak solutions exist globally for all finite—energy initial data , , yet it is
unknown whether such solutions can develop finite-time singularities. If blow-up were
to occur, parabolic rescaling produces ancient limit profiles, but the classical formula-
tion offers no mechanism forcing rigidity or triviality of these limits @, . A successful
resolution must therefore identify a geometric quantity that: (i) survives weak and
parabolic limits, (ii) admits a closed evolution compatible with harmonic analysis, and
(iii) supports a monotonicity principle strong enough to enforce rigidity of all ancient
blow-up limits.

A natural candidate in the vorticity formulation is the direction field £ = w/|w|,
which governs vortex stretching and whose spatial coherence has regularizing effects
[8]. However, ¢ is analytically unstable: it is undefined on the vacuum set {w = 0},
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fails to be weakly compact, and does not behave well under parabolic rescaling. As a
result, £ cannot serve as a blow-up—stable geometric variable.

To overcome these obstructions, we introduce the vorticity direction dyadic
E=¢(®¢ € Symy,

a rank-one projector taking values in the Veronese surface V2(S?). Unlike &, the dyadic
field admits weak-* limits as an Symgr—valued Radon measure and is preserved by the
structure of the Navier—Stokes nonlinearity: Biot—Savart, the pressure projection, and
the stretching term all act linearly or bilinearly on =Z. This makes = the minimal
scale-invariant geometric lift of vorticity direction compatible with weak compactness.

—_

We derive an intrinsic evolution equation for = featuring a nonlocal Calderon—
Zygmund curvature operator:

KulEl@) = pv. || il =) Koala = ) Zacl) 0) i) ds

where K, is the kernel associated with the Biot—Savart gradient. This operator en-
codes the dyadic component of vortex stretching, is homogeneous of degree 2 under
parabolic scaling, and is stable under the weak limits generated by Leray—Hopf so-
lutions. In particular, the stretching and diffusion terms yield a closed evolution for
= modulo Calderén-Zygmund operators, a crucial feature for the harmonic—analytic
approach developed here.

To detect concentration and extract rigidity we introduce a scale-invariant dyadic
entropy

W) =7 [ (K[ @) Zri@) + V2, (0) ) o 0] G o)

where 7 = —t is backward time and G is the backward heat kernel. The integrand
couples a nonlocal curvature density with a Fisher-type Dirichlet term, weighted by the
effective Gaussian density 7|w;| G-. The choice of weights is dictated by the parabolic
scaling symmetry: each term is dimensionless.

A key advantage of the dyadic formulation is its compatibility with Fourier analysis.
The curvature operator admits the representation

Kij[E](n) = Mijacba(n) Eacwewa(n), M (n) = m(n) @ m(n),
where m(n) is the Calderén—Zygmund symbol for the Biot—Savart gradient. Weighted
by G,(n) = e~ the entropy admits the frequency-space form

i) =2 [ (M) St =) : =) + Il B~ )

Differentiating this expression and using the evolution law for = produces a har-
monic—analytic perfect-square identity:

d 9.2
EW(T) =27 /R3

This is the dyadic Calderon—Zygmund analogue of Perelman’s monotonicity formula
for Ricci flow [9]: the entropy is nondecreasing and achieves equality only when the
expression inside the square bracket vanishes identically.

—

inD = = 2 _rlnl2
inE(n, —7) + M(n)Zww(n, —7) + £=E(n, fT)‘ e~ .




THE VORTICITY DIRECTION DYADIC FOR 3D NAVIER-STOKES 3

The equality case yields a fully linear constraint in frequency space. Let (weo, Zc)
be an ancient limit obtained from parabolic blow-up around a hypothetical singularity
[6, [7]. If W is constant on a time interval, then

iNZ0 (1, —T) + M (1) Ecwootios (11, =) + =200, —7) = 0 in &'(R?),

a first-order affine relation in 7. Solutions of this equation compatible with the dyadic
measure constraint are necessarily Gaussian:

|woo (T, —7)| = C(r)e #FAT = (2,—7) = P,

where P is a rank-one projector. These dyadic Gaussian profiles violate incompress-
ibility unless C(7) = 0, forcing the ancient limit to be trivial.

Thus the dyadic entropy furnishes a spectral rigidity principle: any ancient solution
saturating the entropy monotonicity must vanish identically. Since a genuine singular-
ity would produce a nontrivial ancient blow-up limit, finite-time singularities cannot

occur (Corollary [6.5).

2. PRELIMINARIES

We work on R? equipped with Lebesgue measure. Indices range from 1 to 3 and
repeated indices are summed. All Fourier transforms are taken in the spatial variable
unless stated otherwise. The viscosity is normalized to 1 throughout. We write D'(§2)
for the space of distributions on an open set Q C R? x R.

2.1. Vorticity, Leray—Hopf solutions, and Biot—Savart. The vorticity is defined
by

(2.1) w; = €ijk Ojur,

where g;;;, is the Levi-Civita tensor. The incompressible Navier-Stokes equations are
written in velocity form as

(2.2) Ovui + u;0ju; + Oip = Auy,  Oiu; =0 in D'(R3 x (0,T)),
where the pressure is determined (up to a constant) by

(2.3) —~Ap = 9;0;(uju;) in D'(R® x (0,T)).

The initial datum of is ug € L?(R?), dyup; = 0 (divergence-free).

Definition 2.1 (Leray-Hopf solution). A divergence-free field u; : R® x (0,T) — R is
a Leray—Hopf solution if

u; € L>(0,T; L*) N L*(0,T; HY),
the global energy inequality holds,
t
(2.4) ()72 + 2/0 IVu(s)[Z2ds < luoliZ.,

u satisfies the Navier—Stokes equations (2.2]) in the sense of distributions, and u(t) — ug
in L2(R3) as t | 0.

The velocity is recovered from vorticity through the Biot—Savart law,

(2.5) u;(z,t) = p. v./]RB Bij(z — y) wj(y, t) dy,
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where B;;(z) is homogeneous of degree —2, odd, and satisfies z; B;;(z) = 0. Differenti-
ating (2.5)) yields the Calderén—Zygmund representation

(2.6) Oru;(x,t) = p. V./R3 Kiji(x —y) wj(y, t) dy,

where Kjj;, is homogeneous of degree —3, cancels on the sphere, and satisfies the
Hérmander condition]

Definition 2.2 (Vorticity equation). The vorticity evolution satisfies
(2.7) Oyw; + Ujajwi = ch“?jui + Aw; in D

The pressure term disappears due to €;;,0;0;p = 0, reflecting that vorticity evolution
is driven solely by stretching and diffusion. This decomposition will be relevant in
Subsection [3.21

Remark 2.3 (Formal identities). One has formally (momentarily ignoring issues of
differentiating distributional identities)

Owi = €45 05 (Opuy), uj0jw; = €5, 05 (urOpuy),
and
w;jOjui = €jmn (Omun)(95u;).
2.2. Parabolic scaling and backward cylinders.

Definition 2.4 (Parabolic scaling). For A > 0 define
(2.8) WM, ) = Au(Az, A2, WM (@) = A2 w;(\z, A%).

K3 K3

If (u, p) solves ([2.2) on (0,T), then (u™,p™M) solves ([2.2) on (0, \~2T) with vorticity
)
w

Definition 2.5 (Backward cylinders).
Qr(zo, tg) = {(az,t) dr—xol <1, tg—rP<t< to}.
Note that Q,(zo,to) rescales to Q1(0,0) under the parabolic map (z,t) — ((z —
zo)/r, (t — to)/r?).
2.3. The dyadic field and dyadic measure.

Definition 2.6 (Dyadic field). For a nonzero vector w € R3, define the rank-one
projector

w; w;j
Dij(w) = ——2 B;;(0) =0,
Z](w) |w| |,w|7 ZJ( )
Given a vorticity field w in the sense of (2.1), set
(2.9) Eij = ©ij(w).

Thus E(z) € Sym?{ is a spatially varying projector identifying the vorticity directiorﬂ
We may define ®(0) = 0 arbitrarily on the zero set {w = 0}; this ambiguity is harmless
because it is annihilated by the weight |w| in the dyadic measure below.

1A kernel K satisfies the Hérmander condition if f|:c|>2\y\ |K(x —y) — K(z)|de < C Vy # 0. This
indicates that the kernel must not oscillate too violently when translated by a small vector y, provided
we stay away from the singularity. It also ensures that the singular integral operator behaves well on
functions that are not highly concentrated near the singularity (cf. [10]). In particular, the associated
singular integral operators extend boundedly on LP(]R?’), 1 < p < o0, and on a range of Hardy and
BMO-type spaces, which will be used tacitly in the harmonic analysis below.

ZRecall that Sym$ = {A = AT e R®*®: A > 0}.
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Definition 2.7 (Dyadic measure).
(2.10) Nij = Eij ]w\ dl’,

a Symj —valued Radon measure absolutely continuous with respect to |w|dz. In par-
ticular, if w € L | then |w| € L] _, so u has finite mass on compact sets.

The weak-* stability inherent in is the principal compactness feature available
in the Leray Hopf setting. Since neither w® nor €% = w® /|w*)| need converge
strongly on any scale, the dyadic measure E(k)|w(k)| dx furnishes the only canonically
stable object under L?-based bounds. The next lemma records this stability in a form
tailored to the blow-up analysis.

Lemma 2.8 (Weak-* stability). Let {w®} be a sequence with
wh) ~w in L2 (R?).

Define the SyméF —valued Radon measures
pF = o (w®) Wk dz.

Then, up to extraction of a subsequence,

p® 5 in Mige(Symy),

where p is absolutely continuous with respect to |w|dz and
u=®(w)|w|de.
In particular, for every compact K C R3 and every continuous ¢ : K — Symy,

fim, [ 1) By () [P @) o = [ 5 (2) By () ()

k—o0

Proof. Fix a compact set K C R3. Since w®) — w in LQ(K) the sequence {w®} is
bounded in L?(K), and hence {|w®)|} is bounded in L' (K). Thus the total variations

W) = [ @) [ ) do < / o) dz

are uniformly bounded.

Step 1: Convergence in measure along a subsequence. We claim that every subsequence
of {w(k)} contains a further subsequence converging to w in measure on K.

Let {w*2)} be any subsequence. Since {w**)} is bounded in L?(K), by standard
Banach—Alaoglu and diagonal arguments we may extract a further subsequence (not
relabeled) and a function @ € L?(K) such that:

o wk) G in L2(K), and
o W) (z) = T(z) for almost every z € K.

On the other hand, the original assumption w®*) — w in L?(K) forces the weak limit
to be unique; hence w = w almost everywhere on K. Therefore, after passing to a
subsequence, we have
w® () > w(z) for ae. z € K,

which implies that w*) — w in measure on K.

Since the above argument applies to any subsequence, we may, without loss of
generality, assume from now on that the original sequence {w(k)} itself converges to w
in measure on K.

Step 2: Truncation of the dyadic projector. Fix € > 0 and define
0% (w) 1= P(w) Lyju|>e)-
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On the set {|w| > ¢} the map w + ®(w) is Lipschitz, hence continuous. Since w® — w
in measure on K, and {|w®|} is uniformly L'-bounded, the dominated convergence
theorem applied to a further subsequence yields

/ ij () B5; (WP (2)) |w® ()| dz — / Yij(x) 05 (w () [w(z)| dz,
and hence the same limit for the whole sequence.

Step 3: Removing the truncation. Since |®(w)| < 1 for all w,

[@(w®) - * (W M) < 100/

and uniform L'-boundedness implies

sup/ L)<z} lw®] — 0 as e} 0.
k JK

| v 6 — [ b0k,

which identifies the weak-* limit of u®) on K as ®(w) |w|dz.

Therefore,

Since K was arbitrary, the convergence holds on every compact set and hence in
Mioc(Symy ), completing the proof. O

Definition 2.9 (Blow-up limit). Let Ay — oo be any sequence of scales, and consider
the parabolically-rescaled vorticity fields

W®(@,t) = w2, p®) = o(w®) [w®)] da.

By the invariance of the Navier—Stokes equations under the scaling (z,t) — (Arz, Ait),
each w®) is again a Leray—Hopf vorticity field, now defined on the interval (—/\,;QT, 0).
For any fixed compact subset K C R® x (—00,0), the set K N (R® x (=\,>T,0))
eventually contains K entirely; hence we may regard the sequence {w(k)} as defined
on R3 x (—00,0) in the sense of local convergence.

A pair (wee, oo ) is called a blow-up limit of w if, after extracting a subsequence (not
relabeled), the following hold:

(i) wk) — wy in L (R3 x (=00, 0)),

.o *

(11) U(k) — Moo in Mloc(sym;,_)v

and the limit measure is absolutely continuous with respect to the vorticity magni-
tude of the limit:
Hoo,ij = Eoo,ij |Woo| d$7 B = (I)(Woo)'

In particular, the dyadic direction survives the blow-up procedure and remains a rank-
one projector almost everywhere.

Equivalently, for every compact K C R3, every continuous test tensor ¢ € C(K;Syms),
and for almost every ¢ € (—o0,0),

im0 01y ) |, o = [ 5 0) By e .8 e )] o

k—o0

That is, the dyadic measures converge weakly-* on each spatial slice, and their densities
are encoded by the limiting vorticity direction.
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2.4. Harmonic analysis and curvature operators.

Definition 2.10 (Fourier transform). For f € S(R?) define the Fourier transform and
its inverse by

Fon= [ e f@an, g = g [ e Fan

Throughout, Fourier transforms of fields such as w, =, and Zww are understood in
the sense of tempered distributions: the Leray—Hopf bounds ensure at most polynomial
growth in z, so these objects lie naturally in S&'(R?).

The backward heat kernel satisfies

(2.11) G, (n) =e P,
where 7 = —t is the backward time parameter.

Definition 2.11 (Calder6n-Zygmund kernels). A kernel Tp;(2) defines a Calderén—
Zygmund operator if

(i) Tup is homogeneous of degree —3,

(i) [ Tulz)dot) =0

zl=1

(iii) T,y satisfies the Hormander condition.

The Biot—Savart gradient kernel K, satisfies these properties, and its Fourier mul-
tiplier satisfies

Iui(n) = mijr(n) w;(n),
where m(n) is smooth away from 0, homogeneous of degree 0, and uniformly bounded.
Only these structural properties of m(n)—rather than its explicit form—are used in
what follows.

Definition 2.12 (Dyadic curvature operator). Define the nonlocal curvature operator

(2.12) Kij[E](z) = p. V-/3 Kiap( — y) Kjea(z — ) Bac(y) wo(y) wa(y) dy.
R
In Fourier variables this corresponds to the multiplier
Mijacbd(n) = miab(n) mjcd(n)v
a bilinear Calderén—Zygmund symbol homogeneous of degree 0 (cf. [11]).
Lemma 2.13 (Gaussian multiplier identity). For any tempered distribution f,
~ ~ _ 2 ~
(FGr)m) = e " Fn).
These harmonic identities permit all calculations involving the dyadic entropy and
the perfect-square monotonicity formula to be carried out in Fourier space.
3. EVOLUTION OF THE DYADIC FIELD

Throughout we write =;; = ®;;(w) as in (2.9), that is,

Wl t) £ 0,
Eij(x,t) = |w|
0, w(x,t) =0,

so that 5;; is a rank-one symmetric projector taking values in Sym?{. Since w € L120 o

the zero set {w = 0} carries no dyadic mass, and all identities below are understood
pointwise for w # 0 and in the sense of distributions elsewhere. The dependence of
= only on the direction of vorticity underlies the geometric structure of the evolution
law that follows.
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3.1. Differentiation of the dyadic field. Whenever w # 0, introduce the vorticity
direction & = w;/|wl, so that Z;; = &;¢;. Differentiation gives the product identities
(3.1) KH=ij = (0e&i) §5 + &i (Oi&;), OEij = (0k&) & + & (Ok&;)-

To compute 0;&;, differentiate the quotient & = |w| ™ w;:

O&i = |w| ™ Owi — & lw| ™ & Oy

Introduce the orthogonal projector onto the plane orthogonal to &,
(3.2) io(w) := 6ia — Eias

which satisfies 11;,€, = 0 and IL;,w, = 0. Then 0;¢ admits the intrinsic representation

1
3.3 & = —
( ) té-’L |w|
making clear that only the component of Jiw orthogonal to the vorticity direction
influences the evolution of &.

1L, (w) at"‘)aa

Remark 3.1. The projector II enforces the geometric constraint 9,6 L &, reflecting that
2 = £ ® & evolves purely by rotation of the vorticity direction. This orthogonality is a
key structural feature used later in constructing the nonlocal curvature operator: the
dyadic field is insensitive to changes in the magnitude of vorticity.

Using the vorticity equation (2.7)),
Opw; = — upOpw; + wedpu; + Aw;,
substitution into (3.3)) yields the intrinsic transport law

1
Tl ITiq (w) (WmOmua + Aw,),
expressing the rotation of vorticity direction as a balance between stretching and diffu-
sion. The convective derivative d, +u -V appears naturally, reflecting simple advection
of the direction field.

(3.4) O + g0 =

3.2. Intrinsic evolution of the dyadic field. Insert into the differentiated
identity
OiZij + wdfZij = (0r&i + i) &5 + &i (0e€j + week;),
to obtain
(3‘5) 81552‘3' + UgagEij = |wl’ [Hm {j (wmamua + Awa)
+ & Hja (wmamua + Awa)] .

It is natural to separate the stretching and diffusion components:

1
ﬁ;tretch — m [Hia 5] wmamua =+ fl Hja wmamua] ,
(3.6)
af _ Lo A A
753' - |w) [Hmfj wa + &i ja wa]-
Thus,
(3.7) atEij + UzagEij — mtretch + 7;;113

Since each term in (3.6) is symmetric in (¢, ), the dyadic quantities Z;; remain
in Sym; under the evolution (3.7). Although the diffusive term involves the local
quantity Aw, the projection II couples it nonlinearly to the geometry of the vorticity
direction.



THE VORTICITY DIRECTION DYADIC FOR 3D NAVIER-STOKES 9

Remark 3.2 (Harmonic-analytic interpretation). The stretching term involves Oy, uq,
which admits the Calderén—Zygmund representation . Substituting this repre-
sentation into and using the projector identities produces the bilinear nonlocal
curvature operator

Ki;[E](z) = p. V'/Rs Kiap(x = y) Kjea(r — y) Zac(y) wo(y) waly) dy,

whose Fourier multiplier is M(n) = m(n) ® m(n) (cf. Definition 2.12). The diffu-
sive part T4 contributes the second-order Fisher-type term in the dyadic entropy.
Thus is the local precursor to the nonlocal evolution underlying the perfect-square
monotonicity formula developed in Section

4. NONLOCAL CURVATURE AND DyADIC GEOMETRY

In this section we record the analytic and geometric properties of the nonlocal cur-
vature operator acting on the dyadic field Z;; = ®;;(w). The operator itself was intro-
duced in Definition here we establish its functional structure, its precise homo-
geneity under Navier—Stokes scaling, and its stability under weak convergence. These
facts are essential for the construction and monotonicity of the dyadic W—functional

in Section |5l Throughout, w; and Z;; are as in (2.1)) and (2.9)).

4.1. Curvature as bilinear Calder6n—Zygmund interaction. The stretching com-
ponent of the dyadic evolution involves Op,uq, which admits the Calderén—
Zygmund representation . Substituting this representation into yields a
nonlocal bilinear operator of the form

KulEl@) = pv. || il =) Kal =) Zuc) n(0) sty o
Its Fourier multiplier is the multilinear Calderén—Zygmund symbol

Mijacbd(n) = Miqp(1) Mjcd(n), M(n) =m(n) @ m(n),

where m(n) is smooth away from n = 0, homogeneous of degree 0, and uniformly
bounded. The curvature operator is thus bilinear in the pair (£, w) and homogeneous
of degree 0 in frequency variables.

4.2. Scaling. The dyadic geometry underlying the YW—functional requires the scaling
of K;j[Z] under the Navier-Stokes transformation (x,t) — (Az, A%t).

Lemma 4.1 (Scaling). Under the Navier—Stokes scaling of Definition
Kij[EV](x,t) = AT Ky [E] Az, A%).
Thus the curvature operator is homogeneous of degree 7.
Proof. We compute directly using the rescaling w® = X2w(Az) and Z® = E(\x).
Writing z = x — y and using Kj,(z) homogeneous of degree —3,
Kiab()‘z) = )\_3Kmb(2), Kiab()‘_lz) = )‘3Kiab(z)‘

Hence the product kernel satisfies

Kiab()‘_lz) chd()‘_lz) = )‘6 Kiab(z) chd(z)‘
The vorticity factor contributes wéA)wC(lA) = Mwpwy, while the Jacobian from y = A~ 1y/
contributes A\~3. Altogether:

A AT AT =0T

yielding the stated formula. O
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4.3. Curvature density. The dyadic curvature density combines the nonlocal stretch-
ing interaction with the second—order Fisher term.

Definition 4.2 (Curvature density). The diffusive contribution produces the Dirich-
let—type density

The stretching component contributes the scalar contraction KC;;[Z]Z;;. The total
dyadic curvature density is

(4.2) A(z) = Kij[E(x) Bij(z) + OpZij () OkEij ().
Lemma 4.3 (Homogeneity). Under the scaling (2.8)),
AN (1) = AT Az, N2t).

Proof. The contraction K;;[Z]Z;; inherits the factor A7 from Lemma The Fisher
density satisfies VEV = \(VZE)(A\z), hence |[VEWM |2 = A2|VE|?, which scales strictly
lower than the curvature term. Since A is defined as the sum, its dominant homogeneity
is AT O

4.4. Weak stability under blow-up limits. The nonlocal curvature remains stable
under weak convergence of vorticity and dyadic measure, a fact essential for passage
to blow-up limits in Section [6]

Lemma 4.4 (Weak stability). Let w®) — w in L} _
Lemma[2.8. Then, after passing to a subsequence,

Kiy[EW] = Ky[E] in Lie(RY).

and suppose u(k) 5 opoas in

Proof. Fix x € C2°(R?) and indices 4,j. Since the dyadic measures Z*)|w(*)|dz con-
verge weak-* to ZE|w|dx, we obtain convergence of the bilinear convolutions against
any truncated Calderéon—Zygmund kernels. The remaining singular part is handled
via bilinear Calderén—Zygmund theory [11], which provides uniform integrability of
the tails. Sending the truncation parameter to zero yields the claim. An expanded
treatment of this claim is provided in Appendix [A] O

Remark 4.5 (Interpretation). The curvature operator couples the dyadic field with the
vorticity magnitude through the measure =;;|w|dz. Weak stability ensures that this
coupling persists in blow-up limits, providing the analytic bridge between the dyadic
evolution and the entropy monotonicity and rigidity arguments developed in Section [5}

5. DyApic ENTROPY AND MONOTONICITY

We introduce a scale—invariant entropy functional adapted to the dyadic geometry
and the nonlocal curvature. Its structure mirrors Perelman’s W-entropy for Ricci
flow: a backward Gaussian kernel localizes curvature concentration at a parabolic
scale, while the algebra of the dyadic field and the Fourier representation of G, allow
the entropy evolution to collapse into a harmonic—analytic perfect square.

5.1. Backward kernels. For (zg,t) € R3 x R and t < tg, the backward heat kernel
is

_ 2
Glant 1) = (it = ) exp( — 225 ).
solving the adjoint heat equation

(at + AI)G(xo,to) - 0
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For 7 > 0, the kernel based at (0,0) is

Ll

Gy () = (4mr) 2 exp( — BE) = Gl (@, ~7).
Elementary differentiation yields

_ 3 — _ Tk
(5.1) 0rGr = AG, — —Gr, Gy =3~

and its Fourier transform is the Gaussian multiplier

Gr,

(5.2) Gr(n) =e~"M".

This explicit Fourier representation plays a decisive role in reorganizing the entropy
evolution into a perfect square.

5.2. Dyadic entropy. Recall the dyadic curvature density
A(z,t) = Kij[E](2, 1) Zij(w, 1) + OkZij(,t) OpZij(z, 1),

and the dyadic measure p;; = Z;jjw|dx. For any spacetime field f(x,t) we write
fr(z) = f(x,—7).

The homogeneity statements of Lemmas [£.1] and together with the Leray—Hopf
scaling laws, give:

—_
—

the stretching curvature term K;;[Z]Z;; scales like A7,

e the Fisher term |[VZ|? scales like A2,

e the dyadic measure |w|dz scales like A\=1,

e the backward heat kernel satisfies G, (A~1y) = A3G 2, (y).

Thus the combined integrand

7 Ar () Jwr ()| Gy ()

is exactly dimensionless under Navier—Stokes scaling. This determines the correct
weighting in the entropy.

Definition 5.1 (Dyadic entropy). For 7 > 0, the dyadic entropy is defined by
63) W=7 [ @) @Gy dr, Ar(e) = Ala ).
Equivalently,

W(r) = /R [P @) 25 @) + 72 V2@ fer (2)| G () d

Local integrability follows from:

Calderén-Zygmund bounds on /C;;[=],
the uniform boundedness 0 < =Z < ] in Sym;{,
the Leray—Hopf bound w € LIQ0 o

and the Gaussian decay of G.

The factor 72 in front of the curvature density, together with the backward heat
kernel and the effective measure |w,|dz, is precisely what renders W(r) invariant
under parabolic rescaling.
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5.3. Scaling invariance.

Lemma 5.2 (Scaling). Let (u™,w® 2N be the parabolically rescaled fields of Def-
z'm'tz'on and let WO denote the entropy computed from (w(A), E()‘)). Then, for all
A>0and T >0,

W (1) = W(A?T).
Proof. We list the scaling of each component.

Curvature density. By Lemma |4.3

AN (1) = A2 A2, ().
Dyadic projector. The dyadic field obeys

20 (2) = By (M),

Vorticity. Backward in time,

W (@)] = A? |wrer (Az)|-

Gaussian kernel. The exact scaling identity is
G-(Aly) = NG (y).

Insert these into the definition of W™ (7):
W (r) = 72 / A2 Ay, (Az) N wye, (Az)| Gr(z) da.
R3
With the change of variables y = Az (dz = A~3dy) and the Gaussian identity,

W (7) = 72 /R N A () Nlwner (1) G- (A1) A dy

= 7_2 )‘2“4/\27'(3/) )\2|0J)\27(y)‘ ()\3G)\27'(y)) )‘_de
R3

= 0202 [ A (9) o ()] G (0) iy
= W(N\?T).
This establishes parabolic scaling invariance. O

5.4. Fourier representation and monotonicity. We now pass to frequency space.
Recall that the curvature operator has the multilinear Fourier representation

K E)(n) = Mijacpa(n) Zacwpwa(n),  M(n) = m(n) © m(n),

where m(n) is the 0-homogeneous Calderén—Zygmund symbol associated with Oyu;.
In particular, M (n) is smooth away from the origin, bounded on spheres, and satisfies
the standard bilinear CZ estimates (cf. Definition .

The backward Gaussian weight satisfies

Gr(n) = e,
cf. (5.2). It is convenient to introduce the weighted dyadic density
Or(2) = 7ws (0) | Grlw), By = Tlen] * G

The convolution arises because multiplication by G, in physical space corresponds to
convolution by e~ Tl in frequency space.
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Lemma 5.3 (Fourier representation of W). For every 7 > 0 one has
— = A~ o~ 9\ 2
(54)  WI(r) = 72/3 (Mijacbd(ﬂ) Bacwswa(n) Eij(n) + [n]* |2+ -(n)] )e T dy).
R

Proof. Write W(7) in the form of Definition

Curvature contribution. The term
7 [ K (B 0) Zris o) or ()| Gir () o
R

is handled using Plancherel’s theorem:

/fgz/ﬁ-

Insert the multiplier representation of IC;;[=] and use that multiplication by G cor-
responds to convolution by eI in frequency space. The result is the first term

inside (5.4]).

Fisher contribution. Similarly,
72/|VET|2|WT|GT

transforms under Plancherel by sending 0x= to multiplication by ing, giving the factor
In|?. Again the Gaussian weight contributes convolution with eIl yielding |Zx®.|2.

All steps rely only on:

2
loc?

e the Leray-Hopf L? bounds ensuring w € L
e the uniform boundedness 0 < = < 1,
e the bilinear Calderén—Zygmund bounds for M (7).

This completes the proof. U

The evolution of = and w along a Leray—Hopf solution, once placed under the Gauss-
ian weight, becomes a first—order system in 7 for g(m —7). Differentiating in 7,
converting the T7—derivative to —0;, and substituting the vorticity equation and the
dyadic evolution equation yield a perfect square.

Theorem 5.4 (Entropy monotonicity). Let (u,w) be a Leray—Hopf solution and let
E = ®(w) be the associated dyadic field. Then for every T > 0,

i T) = 72
(5.5) arMr) =2 /R3

—

= = = 2
inE(n, —7) + M(n) Sww(n, 1) + o= £, —7)|

% e~ Thl? dn > 0.
Hence W(T) is nondecreasing in T.

Proof. We begin from the Fourier representation of W given in Lemma

—

W)= [ (M) S, =) s Sl =) + ol [E 5 o))" .

To simplify notation set

—

éT(n) = 2(77» _7_)¢ @7(77) = EWW(’?, _7_)'

1. Mollification. The fields =, w, and u are only weakly regular. To justify differen-
tiation we mollify spatially. Let p. be a standard mollifier and define

—=E _ = g __ g __
E° =2 pe, w® = W * pg, U = U * pg,
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together with

EE(n) =Z25(n,—7),  Qs(n) ==wwi(n,—7), 7 =7|wi|G;.
All of these are smooth in x and therefore smooth in 7 when evaluated at ¢t = —7.

Calderon—Zygmund bounds remain uniform in €.
Define the mollified entropy

~ = = == 2\ —r|n|2
Wi = [ (M@ Z -+ l? [EF B2 a,

For each fixed & > 0 the map 7 — W?(7) is C*.

2. Differentiation. Differentiating ég and Q/,)\i gives

d — — d — —
= = —),=¢ _ € — _ ZEWEWE —7).
dTHT at (777 T)7 dTQT 815( ww )(777 T)

The mollified evolution equations are
Ow® = —(u® - V)w® + (v - V)u® + Aw®,
5° = —(uf - V)ES 4 Tovwetchze] 4 iff ey,
Stretching terms. Using the Fourier identity
Oy (m) = miws ()i (1),
the stretching components become M (n)C/Q\i

Diffusion terms. Diffusion contributes ]77\2% and |7]|2(D/25.
Transport cancellation. For any smooth tensor field F*€,

WENEN) = [ i = Q) O Fol = ) e

Multiplying by e~ and integrating by parts in n, the identity
1
2T

ensures that all transport contributions cancel exactly—this is the same cancellation
mechanism present in Perelman’s entropy formula.

—7n|?

. _ 2
ine Ve 7l

Collecting all differentiated pieces and rearranging yields

iWE(T) =277 /

— — 1 2 )
nEe + M(n)Qs + —E=| e dy.
= o | (MQs + 5 55| e n

3. Limit as ¢ — 0. Since
=== w® = w, u® —wu in L, and a.e.,

and Calderén—Zygmund multipliers are bounded on the mollified fields, we have point-
wise a.e. convergence in 7 of all Fourier quantities:

—

§§—>ET, @_%@-, ég*q/)\gﬁﬁ*(f;
Uniform integrability follows from the Leray—Hopf energy bounds
wr, Vur, 2, € L3(R3),

and the fact that |n[fe~""* € LY(R3) for all k& > 0. Hence dominated convergence
applies, yielding

d d

We(T) = W(T), —W(1) — s

I W(T).
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Passing to the limit in the identity above gives

iVV(T) = 272/
dT R3

which is nonnegative. Thus W(7) is nondecreasing. O

_ 1 2
inEr +Mn)Qr + 5 e~ dy,
T

Corollary 5.5 (Spectral equality case). If W/ (1) =0 for all T € (11, 72), then for each
such T,

(5.6) inEOL—T)+AJOﬂEwwOL—T)+§&EUL—T):O in S'(RY).

Proof. When W (1) = 0, the right-hand side of the monotonicity identity van-
ishes. The Gaussian factor e=7"" is strictly positive, and the integrand is the L%—norm
of the expression in . Thus the squared quantity must vanish for almost every
n € R3. Since all terms are tempered distributions and the multiplier M (7) is smooth
away from the origin, the identity holds in S'(IR?). O

5.5. Stability under blow—up.

Lemma 5.6 (Stability of W). Let (w® 1)) be a blow-up sequence with ancient
limit (Woo, fioo) in the sense of Definition . Let W) and Wy, be the corresponding
entropy profiles. Then for every fixzed T > 0,

WHE () — Wao(r)  (k — o).

Proof. Fix 7 > 0. By the definition of blow—up limit and standard parabolic compact-
ness for Leray—Hopf solutions,

wS—k) — WOoyT in L120c7 Es-k) — E'OO,T a.e. and in L1200'
By Lemma [4.4]
’Cij [E(k)] — ICU [EOO] in Llloc(Rg)‘

The backward Gaussian G is smooth, bounded, and rapidly decaying. Moreover,

7 |w®| e LY(R?), sup [|w® | 2 < oo,
k

by the Leray—Hopf energy bound. Thus every factor appearing in the integrand of
(15.3)—mnamely,

AP W®) G
converges in Llloc; and the Gaussian makes all spatial integrals absolutely convergent
on R3.
Therefore,

W) =72 | AW (2) |wi ()| Gr(2) da
R3

— 7—2/Rg ‘Aoo,'r(x) |woo,7'(x)’ GT(m) dz = WOO(T)’

as claimed. O



16 ALEJANDRO JOSE SOTO FRANCO

6. CONSEQUENCES FOR BLow-Up LiMITS

We now place the dyadic entropy and its Fourier—space monotonicity into the frame-
work of parabolic blow-up for Leray—Hopf solutions. Let (u,w) be a Leray—Hopf solu-
tion on R3 x (0,7, and let (wso, Zo0) be an ancient blow-up limit obtained by parabolic
rescaling around a hypothetical singular point, as in Definition [2.9

A central feature of the dyadic formulation is that the measure

Wi = Emlw\dx € M(R?’,Sym;)

is weak-* compact under blow-up. Thus all limiting identities are naturally expressed
at the level of Radon measures rather than pointwise fields—crucial for the spectral
rigidity argument that follows.

The main outcome is a measure-level spectral rigidity theorem: if an ancient blow-
up limit has constant dyadic entropy on some time interval, then the relation obtained
in Corollary forces a Gaussian profile in frequency space, which in turn implies
a Gaussian dyadic field and Gaussian vorticity magnitude. The divergence-free con-
straint then forces the Gaussian amplitude to vanish. Consequently, every ancient
blow-up limit is trivial, ruling out singularity formation.

6.1. Stability and spectral monotonicity for blow-up limits. Recall the Fourier
representation of the dyadic entropy:

where ®,(z) = 7|w(z, —7)|G,(z) and Gr(n) = e,
Let u(k) = E(k)|w(k)| dz be the dyadic measures associated with a blow-up sequence.
By weak-+ compactness in M,c(R?; Sym3),
M(k) = Hoo, w(k) — Weo in LIQOC(Rg)‘
This is the structure needed to pass to the limit in every term of (6.1)).

Lemma 6.1 (Stability of W under blow-up). Let (w®, u*)) be a blow-up sequence
with ancient limit (Woo, ltoo ). Then for every fixed 7 > 0,

WHE(1) — Wi (7).
The limit depends only on the weak-x limit pso and the weak L? limit weo.

Proof. Fix 7 > 0. The entropy W) (7) admits the physical-space expression

W (r) = 7 /

(K EW@, =) 2 (@, —7) + [VE® (@, =7 ) o0 (@) da,
R3

v

where &%) (x) = 7|w® (2, —7)| G (x). This representation is tailored to the weak
convergences defining blow-up.
By Definition after extracting a subsequence,

wF (. =7) = weo(-, —7) in L. 20 (., 1) = E(-,—7) a.e.and in L2 .
Moreover, by Lemma [4.4]
ICU [E(k)](’ _T) — lCij [EOO](a _T) in Llloc'
The Gaussian weight G, is smooth, bounded, and rapidly decaying, and the factor

7|w® (-, =7)| is uniformly bounded in L?(R3) by the Leray-Hopf energy inequality.
Consequently,

o) e L2(R3)  with |®¥)]|,2 uniformly bounded in k.
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Define
) =1 / KyE® = e G, M) =7 / IVE® 2ol G, .

For I fk), the convergences
Ki[E®] = Kij[2) in Lh,, E® =21}, oWaG, eL?
imply
M) 5159 (k= o0).

2

For Iék), the same argument applies with VZ*) in place of K[Z*)], using the Ly .

convergence of VE(*) and the same bound on <I>(Tk)GT.
Thus,

W (@) = 119(7) + 17 () — 17 (7) + 17 (1) = W (7).
as claimed. O
We now pass the Fourier—space monotonicity formula to the limit.

Theorem 6.2 (Spectral monotonicity for blow-up limits). Let (weo, Zoc) be an ancient
blow-up limit and let W be its dyadic entropy. Then W is absolutely continuous on
(0,00) and for almost every T > 0,

d
00 =2 2
dTW (1) T /R3

6.2 —_ —_ = 2 _r
©2) + M () Eacwoowos (1, =T) + 5=Eoc(n, —T)| € I

—

in Zoo(n, —T)

> 0.
In particular, Weso is nondecreasing.

Proof. For each k, Theorem gives the identity

Ly () = By(r),
dr
with
Fi(r) = 272 / in =M (y, —7)
]R3

— 2
+ M () EWw®w® (5, —7) + 3 E® (5, —1)|" e~ ag,

Fy(7) > 0.

Fix ¢ € C2°((0,00)). Applying the fundamental theorem of calculus in distributional
form yields

(1) —~ / W (1) (1) dr = / Fr(1)p(7) dr.
0 0
We pass to the limit on both sides.
Left-hand side. By Lemma W) (1) = Wao(7) pointwise for all 7 > 0. The

monotonicity formula for W) and the Leray-Hopf energy inequality give the uniform

bound

supsup [WH (7)| < C.
k >0
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Hence [WW)(7)¢/(1)| < C|¢/(7)|, an L'-function on (0,00). Dominated convergence
in 7 implies

2) /w (r)dr — — /w )¢ () dr.

Right-hand side. We analyze

/00 Fy(1)p(r)dr.
0

For each 7 > 0, blow-up convergence implies

— o — —

EE(—7) = Zo(s, —7), EEWEWE) () —T) = EooWooWoo (+, —T),

pointwise in 7, by Plancherel and the L120c convergence of the associated physical-
space fields. Since M (n) is a bilinear Calder6n—Zygmund multiplier and G, has strict
Gaussian decay, the expression defining Fj(7) satisfies the pointwise convergence

Fy(1) = Fx (1),

where Fi,(7) denotes the integrand in (6.2)).
To pass to limits under the (1, 7) integral, we require an integrable envelope. Using
the triangle inequality and |M(n)| < 1,

3)  F(r)<cr / (1nf2 (20 (7, =) 2 + 0w (g, —7) 2 ) e~
R3

The Leray—Hopf energy bounds imply

—

wk) m =) e L*(R3), uniformly in £,

and since |n|™e~7I"” € LY(R3) for all m > 0, the right-hand side of is dominated
on supp ¢ C (0,00) by an L'-function independent of k.
Thus we may apply dominated convergence in (7, 7) to obtain

| Ao —z2 [ /R inZm(n, —7)

— 2
( ) Hoowoowoo(nv ) + % 500(777 _T)
(4) x eIl (1) dndr.

Combining , , and yields

—/ Woo(T) @' (7) dT = 2/ / 7'2‘ in E;(n, —T)
0 0 R3

— — 2
+ M(1) EcoWoowWoo (1, —T) + % Eeo(n, =)

x e T’ o(T)dndr.

Since ¢ € C°((0,00)) is arbitrary, this identifies the distributional derivative of
Wso with the right-hand side of | . The integrand is nonnegative, and the Gauss-
ian is strictly positive. Hence - dw, e L10C and Wy, is absolutely continuous and
nondecreasing. O
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6.2. Spectral rigidity for constant entropy. The equality case in the monotonic-
ity identity (6.2) forces the Fourier—space integrand to vanish identically, yielding a

linear constraint relating Z.,(n, —7) and Eoo/w;uoo (n,—7) for each backward time 7.
Because every quantity in is bounded by the Leray—Hopf energy inequality and
the Calderén—Zygmund structure of M(n), the natural functional-analytic setting for
this constraint is the space of tempered distributions &’(R3). This class is invariant
under Fourier transform, closed under multiplication by polynomially bounded sym-
bols, and admits a complete ODE theory along rays n = rf in frequency space; see
Hormander [10].

In particular, any solution of a first—order linear equation in 7 with coefficients
given by homogeneous, bounded Calderén—Zygmund symbols admits tempered solu-
tions with growth at infinity rigidly constrained. Applying this framework to the
vanishing of the perfect square in leads to a frequency—space equation whose
only tempered solutions consistent with the dyadic measure constraint

Zoo|Woo| dz € M(R?; Symy)
are Gaussian self-similar profiles. This yields the following rigidity theorem.

Theorem 6.3 (Spectral rigidity). Let (weo, Zoc) be an ancient blow—up limit. Suppose
Weo is constant on an open interval (11,m) C (0,00). Then for every T € (11, 72),

(6.3)  iNZea(n, —T) + M(1)ZaoWoowoo (N, —T) + £, —7) =0 in S'(R?).

Moreover, the only tempered solutions consistent with the dyadic measure constraint
are Gaussian:

b
(6.4) Eoo(x,—T) = P, |woo (x, —T)| = C(7) exp<—|47|_)7

where P is a rank—one projector in Symi})F and C(1) is a scalar function.

Proof. If Wy is constant on (71, 72), then %WOO(T) = 0 for a.e. 7 in this interval, and

the right—-hand side of therefore vanishes for a.e. 7. As e~ 7* > 0, the integrand
must vanish pointwise in 7, giving in L?(R?) and hence in &'(R?). Continuity
in 7 of all coefficients extends this identity to all 7 € (71, 72).

Fix 7 € (11, 72). Equation is a linear, first-order equation in 7 for Zoo(-, —7)
with coefficients given by the bounded, 0-homogeneous Calderén—Zygmund symbol
M(n). Restricting to rays n = rf with 6 fixed, one obtains an ODE in r > 0. The
homogeneity of M and temperedness of go\o imply that any solution corresponding to
a Radon measure—valued Zq;|wso| must have Gaussian decay in 7. Taking the inverse
Fourier transform therefore yields a Gaussian in x:

|22

Eo(x,—7) = P(T) exp(—?>

for some symmetric matrix P(7) € Syms.
The dyadic structure forces

Boo(,1) = Eoo(2,1) @ &oo(,8)  (|woo(, )] > 0),

so P(7) must be positive semidefinite of rank one. The 7—dependence of P is eliminated
by the compatibility of for different 7 and the ancient character of the solution;
hence P(7) is constant, say P.

A similar argument applied to the scalar field |w| shows that

o~ = C(r) e 21,
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establishing (6.4). Additional details on this claim are provided in Appendix O

6.3. Elimination of Gaussian profiles. We now show that Gaussian dyadic ancient
profiles must vanish identically.

Lemma 6.4 (Gaussian profiles violate incompressibility). If an ancient blow-up limit
satisfies (6.4)) on (71,72), then C(1) =0 for all T € (11,72), and consequently ws, =0
on R3 x (—o0,0).

Proof. Fix 7 € (11,72). Since Zo(x,—7) = P is rank one, we may write P = ( ®
¢ for some unit vector ¢ € R3. Hence the vorticity direction is constant wherever
|woo (+y —7)| > 0, and

|22

Woo(z, —T) = C(7) exp(—?>g‘ a.e. x € R®.

Because wy, is divergence free in the sense of distributions,
DiWooi(,—7) =0  in D'(R?).
Testing against ¢ € C°(R3) gives

0=— /]RB Woo(x, —7) - Vo(z) dx = —C’(T)/ exp(—icf) ¢-Vo(x)dz.

Integration by parts (justified by Gaussian decay) yields
_ : _ =2
0=0C(r) » ¢(x) div <exp< i )C) dz

=C(71) /]1@3 o(z) - Vexp(—%) dz

S [ o) oyexp(-5E) a.

Since ¢ is arbitrary and the Gaussian factor is strictly positive,
(C-z)=0 forall z€R3.

Thus ¢ = 0 or C(7) = 0. The former is impossible since || = 1. Hence C(7) = 0 for
the chosen 7.

As this reasoning holds for every 7 € (71, 72), C(7) = 0 on that interval. The ancient
solution wy is weakly continuous in time, so the vanishing on one time slice propagates
backwards in t. Therefore

Weo =0 on R? x (—00,0).

O

6.4. Spectral rigidity forbids blow-up. We now assemble the preceding results.
Assume that a Leray-Hopf solution u develops a finite-time singularity at 7' > 0.
By the standard parabolic blow-up procedure, one obtains a nontrivial ancient limit
(Woos Eco). The dyadic entropy W is scale invariant and, by Theorem nondecreasing
along the flow. Lemma and Theorem show that the same holds for the entropy
Weo of the ancient limit. Since Wy is bounded below and defined on (—o0,0), it
must be constant on some time interval. Spectral rigidity (Theorem then forces
(Woos Eco) to be a Gaussian dyadic profile, and Lemma shows that any such profile
must vanish identically. This contradicts the nontriviality required of a genuine blow-
up limit. Thus no singularity can form.
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Corollary 6.5 (Global regularity via spectral rigidity). Let u be a Leray—Hopf solution
of the three-dimensional incompressible Navier—Stokes equations on R? x (0,00) with
finite-energy initial data. Then u is smooth for all t > 0; in particular, no finite-time
stngularity can occur.

Proof. Suppose, for contradiction, that u becomes singular at some 7" > 0. The par-
abolic blow-up construction yields a nontrivial ancient limit (weo, Zo0). By spectral
rigidity (Theorem, this limit must be a Gaussian dyadic profile, and by Lemma
every such profile is trivial. This contradicts the nontriviality of the blow-up limit.
Therefore no finite-time singularity is possible, and the solution is smooth for all
t>0. O

7. CONCLUSION

We introduced the dyadic field Z;; as a weakly stable, scale-compatible encoding of
vorticity direction, and constructed a parabolically invariant entropy W tailored to its
nonlocal Calderén-Zygmund curvature dynamics. Passing to Fourier variables reveals
that the first variation of W collapses to an exact perfect—square identity, producing a
sharp spectral monotonicity formula. This formula persists under parabolic blow—up
and therefore controls all ancient limits of Leray—Hopf solutions.

For any such ancient blow—up limit, constancy of WW on a time interval enforces a
spectral linear constraint whose only tempered solutions compatible with the dyadic
measure are Gaussian self-similar profiles: . ;; must be spatially constant and |we|
a backward Gaussian. The incompressibility condition then forces the Gaussian am-
plitude to vanish, implying that every ancient dyadic blow—up limit is trivial.

Since the blow—up procedure necessarily produces a nontrivial ancient limit at any
genuine singularity, this contradiction rules out finite—time singularity formation for
Leray-Hopf solutions on R3. The dyadic entropy and its spectral rigidity therefore
yield an obstruction to blow—up of the three—dimensional incompressible Navier—Stokes
equations.

APPENDIX A. BILINEAR CALDERON—ZYGMUND STRUCTURE AND WEAK STABILITY

This appendix records the analytic framework necessary for the curvature operator
introduced in Definition and supplies a justification of the weak convergence re-
sult in Lemma [4.4] The arguments are standard but are included here to make the
harmonic-analytic input clearer.

A.1. Kernel structure. Recall that the gradient of the Biot—Savart law admits the
representation

Opus(x) = p-V-/[3 Kiap(z — y) wy(y) dy,
R‘

where K4 is smooth away from 0, homogeneous of degree —3, odd, and satisfies the
Hoérmander condition

/| ,, Ktz =) = Ku@ldr < (y£0)
x| >2|y

In particular, the associated singular integral operator extends boundedly on LP(R3)
for 1 < p < oo, and on Hardy/BMO spaces.
The curvature operator acts on the dyadic field via

Kij[E](z) = p.v. /R ; Kiap(r — y) Kjea(® — y) Eac(y) w(y) wa(y) dy.
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The kernel
($7 y) = Kiab(x - y) chd(x - y)

is homogeneous of degree —6, smooth away from the diagonal, and satisfies a bilinear
Hoérmander condition (in the sense of [11]):

/ ‘Kiab(x - h) - Kiab(x) |chd(-7f')‘ dz < C,
|lz[>2|h|

and the symmetric estimate with the roles of the two kernels interchanged. Combined
with the cancellation of K, on spheres, this ensures that the bilinear operator

(f?g) = p-V'/R3 Kiab(x - y) chd(x - y) fac(y) gbd(y) dy

extends to a bounded bilinear Calderén—Zygmund operator on LP x L4 for 1 < p, ¢ < 0o,
1/r =1/p+ 1/q, with operator norm independent of truncations.

A.2. Fourier multiplier representation. The kernel representation corresponds to
the bilinear multiplier

Mijacba(n) = Miab(n) Mjea(n),

where mjq(n) is the Fourier symbol of Kju,. The following properties will be used
repeatedly:

Miqp is smooth on R3 \ {0};

Miqp is homogeneous of degree 0: mqp(An) = myap(n) for all A > 0;
|miap(n)| < C on the unit sphere;

the product symbol M (n) = m(n) ® m(n) inherits all of the above.

In particular, M (n) defines a bilinear Calderén—Zygmund multiplier and is bounded
on L?(R3) uniformly in all truncation parameters arising from approximate identities
and blow—up rescalings.

A.3. Uniform integrability and truncations. For a smooth radial cutoff y. with
Xe(z) = 0 when |z| < € and x((z) = 1 when |z| > 2¢, write

K5(EN@) = [ xelw =) Kianlo = 9) Kyeal = 9) Zaclw) (o) was) .
Because the truncated kernel is integrable and bounded on R3, the map

. . 2
is continuous on Lj ,

The singular part

and hence stable under weak convergence.

Kij[E] — Ki;[Z]

is controlled using the bilinear Hormander condition: the oscillation of the kernel over
annuli {z : € < |r — y| < 2¢} is uniformly integrable, and the L? boundedness of w
yields

IKylE] ~ KGEll. —0 (e —0),

uniformly for = bounded in L*° and w bounded in L120c-
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A.4. Weak stability under blow—up limits. Let w*) — w in Ll20c and assume
the dyadic measures Z*)|w®)|dz converge weak-* to Z|w|dz on compact sets. In
particular,
=W (z) » E(z) for ae. z, 12| Lo < 1.
Fix a compact K C R?® and decompose
Ki[E®) = K E®] + (Ki;[EW] - Kij EM]).

Step 1: convergence of truncated operators. Since K}, is integrable against (E(k), w(k)),

and these fields converge in L%OC, it follows that

K5EW] - KG[E] in LY(K).
Step 2: passage to the singular limit. By uniform integrability of the singular part
(previous subsection),
1535 (E®] = KGEM| 1) < Cple)  with p(e) =0
and the same bound holds with Z in place of Z*). Thus
1535 [EW] = Kij[Elll 1) < IKGEW] = KG(Elllr ) +2C ple),
and letting k£ — oo followed by € — 0 yields
Kij [E(k)] - Kij [E’] in Llloc(RB)a
which is the assertion of Lemma [4.4]

APPENDIX B. FREQUENCY—SPACE ODE AND GAUSSIAN RIGIDITY

This appendix justifies the conclusion of Theorem|[6.3} the equality case in the dyadic
entropy monotonicity formula forces the ancient blow—up limit to be a backward self—
similar Gaussian dyadic profile. The argument reduces the Fourier—space equality to
a first—order radial ODE, applies standard temperedness constraints for homogeneous
multiplier equations, and then reconstructs the unique Gaussian solution by inverse
Fourier transform.

B.1. Reduction to a radial ODE. Fix 7 > 0 and write, for convenience,

E(n) = =" (1), EooWooWoo (1) = Q" (1)
The equality case in Corollary asserts that, as an identity in S9(R3),

1

(B.1) =) + M) Q"(n) + 5-="(n) =0,

where M (n) = m(n) ® m(n) is the 0-homogeneous Calderén-Zygmund symbol associ-
ated with the curvature operator.

Write 7 = rf with » > 0 and 6 € S%. Since m and M are homogeneous of degree 0,
one has M (rf) = M () for all r > 0. Substituting n = 76 into (B.1)) yields

(B.2) ir0 = (1) + M(0) Q"(r) + %5%«9) ~0.

Because Z| weo| dz is @ Radon measure and Eqwoowoo € L%OC(R?’), both Z" and
Q" belong to SY(R?) and therefore grow at most polynomially in |n|. Hence for each
fixed 6, the mappings r — =" (rf) and r — Q" (r) are continuous on (0, 00) with at
most polynomial growth.

To reveal the ODE structure, rewrite (B.2)) as

(B.3) rEr0) = i 0Z(6) ~ M(0) Q"(+6) — 5 =\(rf).
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Dividing by r > 0 and combining the terms depending on =" gives the explicit first—
order radial ODE
d 1 1
B.4 2= :—7<' = —zh M(0) Q" )
(B.4) = (r0) . i0="(rf) + o (r@) + M(0) Q" (r0)
This is a linear ODE in the scalar variable r, whose coefficients are smooth in 6,

homogeneous of degree 0 in 7, and locally integrable in r.

B.2. Temperedness and homogeneous coefficients. The tempered class S°(R?) is
stable under multiplication by symbols that are smooth and homogeneous of degree 0.
In particular:

o If f € SYR3) and a(n) is smooth on S? and 0-homogeneous in 7, then
a(n)f(n) € S°.

o If f € SO(R3) satisfies a first—order linear differential equation in 7 whose
coefficients are smooth on S? and polynomial in ||, then along rays n = ré
the radial function r — f(rf) grows at most polynomially as r — oo; see |10}
Section 3.2].

Applied to (B.4)), this ensures that neither 2" nor Q" can grow faster than polyno-
mially along any ray. Consequently, among the fundamental solutions of (B.4]), only
those with at most polynomial growth at infinity can survive.

B.3. Gaussian decay forced by the equality case. The monotonicity identity
(Theorem ) contains the Gaussian weight e~ 7" inside the perfect square. In the
equality case, that perfect square vanishes pointwise for every n:

1

(=) + M) Q(n) + 5= ="(m) )" =0,

Since e=7* > 0 everywhere, the factor multiplying it vanishes identically. Along each
ray this forces the inhomogeneous term in the ODE (B.4)) to possess the same Gaussian
decay. The homogeneous ODE has a Gaussian fundamental solution of the form e
Polynomial growth at infinity rules out all other modes.

Thus the unique tempered solution of (B.4) consistent with the equality case is
(B.5) =N 1) = P(0) e,
for some matrix P(f) € Symj depending a priori on . By the same reasoning, Q"

must satisfy
2

QMNrf) =C(0)e™™"

for some scalar C(0).

B.4. Inverse transform and dyadic structure. Taking the inverse Fourier trans-

form of (B.5) yields

4T
If P(0) depended on 6, the inverse transform would contain higher spherical harmonics
and would fail to be of rank one a.e. in z. Since Zoo(x,t) = £oo(x,t) @ oo(x, ) is a
rank-one projector, P(#) must in fact be constant on S?. Hence

2

Eoo(x,—T):PeXp<—47), P:C@CESymg, I¢] = 1.

Applying the same Fourier inversion to Q" gives

ol =) = 1) exp (- L),

Eo(z, —7) = P(0) exp<_"’"2> .
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where C(7) is a scalar amplitude depending only on 7. Finally, Lemma shows that
incompressibility forces C'(7) = 0, so the entire vorticity of the ancient limit vanishes.

In conclusion, any ancient blow—up limit saturating the entropy equality case must
be a Gaussian dyadic profile, and the divergence—free condition forces that Gaussian
to be trivial. This completes the proof of Gaussian rigidity.

[9]

[10]

[11]
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