INTRODUCTION TO INCOMPRESSIBLE FLUID DYNAMICS

ALEJANDRO JOSE SOTO FRANCO

ABSTRACT. We present a concise geometric introduction to incompressible fluid dy-
namics, emphasizing vorticity, nonlocality, and the evolution structure most rele-
vant to the Navier—Stokes regularity problem. Classical kinematics is reformulated
in terms of direction fields and dyadic geometry, providing a clear pathway from
Eulerian dynamics to entropy-based rigidity and modern blow-up analysis.
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1. INTRODUCTION

Fluid motion is one of the most familiar phenomena in nature, yet the equations
governing it remain among the most difficult in mathematics. Whether water flowing
through a pipe, smoke drifting upward, or atmospheric currents spanning continents,
fluid motion follows universal principles: each parcel of fluid moves, twists, and inter-
acts with every other. In many regimes, especially at moderate speeds or when den-
sity variations are small, these dynamics are well-approximated by the incompressible
Navier—Stokes equations. Incompressibility here is not a literal physical claim—air
does compress—but a mathematical idealization that captures a volume-preserving
regime in which the geometry of the flow becomes especially transparent |1}, 2].

A fluid is, at a microscopic level, an enormous collection of molecules undergoing
constant collisions. Nothing at this scale suggests that velocity or pressure should be
smooth functions of position. Yet in almost every physical regime outside extreme
micro- and nano-scales, fluids behave as if they were continuous media: they bend
smoothly, develop coherent vortices, transmit pressure, and influence nearby motion
in ways that would be impossible if molecular discreteness dominated. The magnitude
of this scale separation is extraordinary: a cubic millimeter of liquid water contains
approximately

pV  (1000kg/m?) (1 x 107 m?)
M0 (2.99 x 10~26 kg)

molecules—hundreds of times more than the estimated number of stars in the ob-
servable universe. A typical water molecule has a mean free path of merely (g ~
0.1-0.3 nm, while macroscopic flow structures may range from millimeters to thousands
of kilometers [3, |4]. Such enormous disparity justifies describing a fluid by smoothly
varying fields whose evolution is governed by partial differential equations.

Even more striking is the phenomenon of turbulence: when the dimensionless Reynolds
number

N = ~ 3.34 x 10"

L
Re:U—,
v

becomes large, fluid motion transitions from orderly to violently irregular. Here:

e U is a characteristic flow velocity (e.g. mean or peak velocity),
e [ is a characteristic length scale of the flow (e.g. pipe diameter),
e v is the kinematic viscosity of the fluid (for water, v ~ 1079 m?/s).

Large Re indicates that inertial forces dominate viscous forces, enabling vortices to
stretch, fold, and interact across a hierarchy of scales.

According to Kolmogorov’s 1941 phenomenology, turbulent kinetic energy injected
at large scales cascades to progressively smaller eddies until it reaches the dissipation

scale
T] ~ — 9
€

e ¢ is the mean kinetic energy dissipation rate per unit mass (units: m?/s?),
e 77 is the smallest dynamically relevant length scale of the flow.

where:

In water, with v ~ 107%m? /s and typical laboratory values ¢ ~ 1073-10"' m?/s3, one
obtains 77 on the order of tens of microns: far larger than molecular scales (~ 1070 m),
yet far smaller than observable macroscopic structures.

Between the large (integral) scale L at which energy is injected and the small dis-
sipation scale 7 lies the turbulent inertial range, across which the energy flux remains
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approximately constant. Within this range, empirical velocity increments obey the
celebrated Kolmogorov 2/3-law for the second-order structure function,

Sa(r) = E(Ju(z + 1) —u(@)]’) ~ r)*?,  n<r<L,

a cornerstone of modern turbulence theory [5l 6].

A typical laboratory-scale turbulent flow may involve more than 10'° dynamically
active degrees of freedom. Yet, at all scales and in every regime, the governing PDEs
are the same: the incompressible Navier—Stokes equations.

Historically, the mathematical structure of fluid dynamics emerged gradually over
more than two centuries. Euler’s 1757 memoir established the equations of motion for
an ideal (inviscid) fluid [7]. Navier, in 1822, introduced the first continuum-mechanical
model of viscosity based on molecular interactions [8], and Stokes refined this frame-
work in 1845 by formulating the modern stress—strain relation and completing the
viscous term as it appears today [9] . A century later, Leray’s 1934 work founded
the modern theory of weak solutions, proving global existence of finite-energy solutions
and introducing concepts—such as suitable weak limits and energy inequalities—that
remain central to PDE analysis [10]. The Clay Mathematics Institute’s Millennium
Problem on existence and smoothness of Navier—Stokes solutions continues this devel-
opment [11].

Fluid dynamics stands at the interface of physical modeling, empirical turbulence
phenomena, and deep mathematical structure. To develop the analytical framework
needed for incompressible flow, we begin by formalizing the objects of the theory: the
measurable, vector- and tensor-valued fields defined on subsets of spacetime and the
notation used to manipulate them. This requires a careful treatment of spacetime as
a measure-theoretic domain, tensor indexing, and the weak-analytic tools on which all
subsequent arguments rest.

1.1. Preliminaries and notation. A subset of spacetime is simply a Cartesian prod-
uct 2 x I, where € is a spatial region and [ is a time interval. Set-theoretically,

AxI={(z,t):x€Q, tel}

and any field is a function whose domain is this product. Analytically, we regard
Q) as equipped with its Borel o-algebra B(€) and the Lebesgue measure A3, so that
(92, B(Q2), A) is a measure space. Likewise, the time interval carries the one-dimensional
Lebesgue measure A\'. Their product

(Qx I, B(Q) @ B(I), \*@ A\

is the canonical measure-theoretic model of spacetime in Euclidean fluid mechanics;
integrals over €2 or 2 x I are always understood with respect to these Lebesgue mea-
sures. T'wo functions that differ only on a set of measure zero are identified, since all
integral identities and distributional formulations are insensitive to such differences.

Within this framework, a scalar field assigns to each point (z,t) a real number, while
a vector field assigns a vector in R3. More generally, a tensor field is a measurable
function

T:Qx 1 — TMI(RY,

where 7(%)(R?) denotes the space of rank-(r, s) tensors. In practice we work in Eu-
clidean space relative to the standard basis, so every tensor field is identified with its
component functions, each of which is an element of an appropriate Lebesgue space
on Q x I. For instance, a vector field u(x,t) is a rank-(1,0) tensor with components
ui(z,t), and a matrix field A(x,t) is a rank-(1,1) tensor with components A;;(z,t).
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Higher-rank examples such as the Cauchy stress tensor or the vorticity direction dyadic
Eij = £ ® € introduced later fit into the same componentwise description.

Whenever indices appear, they label components relative to the basis {ei, e2, e3} of

R3. Thus

u(z, t) = ui(z, t)e;, (ou); = oijuj,

and repeated indices are summed over 7 = 1,2,3 according to the Einstein summa-
tion convention. Component functions are measurable by default, and equalities such
as u; = v; are always interpreted almost everywhere with respect to the underlying
Lebesgue measure. This convention is crucial: all weak derivatives, divergence identi-
ties, and integral formulations later in the paper rely on properties holding for almost
every (z,t) € Q x I, rather than pointwise.

Because Lebesgue measure is complete and translation invariant, it provides the
natural setting for the function spaces used throughout—LP(Q2), LP(Q2 x I), Sobolev
spaces, and their Bochner counterparts. All tensorial identities, contractions, and
differential operators introduced later are interpreted componentwise in this measure-
theoretic sense.

Vectors and matrices as tensors. A general vector v € R? has the component
representation
Uy
u=|ua|,
us3
and a general matrix (rank-(1,1) tensor) has the form

A A Agg
A= (A;;)=| A Az Ay
A1 Azx Ass

The tensor (outer) product of two vectors u and v is the matrix u®v with components
ujvr  uv2  UIU3
(u ® U)ij = u;vy, UR@UV = | U2V1 UV ULV3
u3v1r uU3v2 u3vs3
Thus expressions such as u;u; represent the 7, j component of u ® u.

Contractions arise by summation over paired indices. The double contraction of two
matrices A and B is the scalar

A: B = A;;Byj,
the Frobenius inner product. In matrix notation,
A: B = A;1B11 + A12Big + - - + A3 Bss.
Likewise, the contraction of a matrix with a vector is

(A’LL)Z = Aiju]'.

Covectors and differentials. In addition to vectors, we frequently use covectors, or
rank-(0, 1) tensors, which act linearly on vectors. In R? every covector can be written
as

a = a; dz',
where {dz!,dz?, dz3} is the dual basis to {e1, ez, e3}. The action on a vector v = v;e;
is

a(v) = a;v;.
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Differentials arise naturally as covector fields. For a scalar field ¢: Q x I — R, the
differential is
d¢ = di¢pda’,
so that d¢ encodes the directional derivative of ¢ in every coordinate direction.

Volume forms and the wedge product. In differential geometry, integration over
a region requires a volume form, often constructed from basic covectors using the wedge
product A. The wedge product is an antisymmetric multiplication satisfying

dat Ada? = —da? A da, dz! A dz® = 0.
In R3 the natural 3-form
dz! A da? A da?
encodes oriented infinitesimal volume, and in standard coordinates this reduces exactly
to the usual Lebesgue volume element

dz = dz' A dz? A d2?.

Thus, although the wedge product is a general geometric construction, in Euclidean
coordinates it reproduces the familiar integration element of multivariable calculus.

Why spacetime uses dzdt rather than a wedge form. When integrating over
spacetime € x I, which is a subset of R? x R = R*, one could in principle use a 4-form

dzt Adz? Ada® Ade.

However, in PDE theory and functional analysis we do not treat time as a geometric
covector direction but as an additional parameter for evolution. Instead of a geometric
volume form, we use the product Lebesque measure

dx dt,

the Cartesian product of the spatial Lebesgue measure dxz and the one-dimensional
Lebesgue measure dt.

This is not merely a matter of notation: it reflects the analytic structure of parabolic
PDEs, where time derivatives and space derivatives play fundamentally different roles.
Using dx dt highlights that integration is taken over a product measure space rather
than a single geometric object with a unified orientation.

Lebesgue measure and why it matters. The Lebesgue measure on 2 C R? assigns
a “volume” to each measurable set and provides the foundation for LP spaces. Working
with Lebesgue measure ensures:

e functions are considered equivalent if they differ only on sets of measure zero;

e weak derivatives, distributional identities, and Sobolev spaces are well-defined;

e mixed space-time integrability properties such as L?L2 or L$°L? behave cor-
rectly;

e Fubini’s theorem applies, allowing spacetime integrals to be separated into time
integrals of spatial integrals.

This analytic framework is essential for the Navier—Stokes equations, where solutions
may be defined only almost everywhere, and where the time variable acts as an evolu-
tion parameter while space carries geometric and differential structure.

Meaning of “almost everywhere.” Let (X, M,u) be a measure space; in our
applications X = Q C R3 with Lebesgue measure p = A3, or X = Q x I with
product Lebesgue measure A3 ® Al. A property P(r) is said to hold almost everywhere
(abbreviated a.e.) on X if

p({z € X : P(x) fails}) = 0.
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Equivalently, P holds at every point except on a set of measure zero. Two measurable
functions f,g: X — R™ are considered equal almost everywhere if

p({r e X : f(z)#g(x)}) =0.

This convention is fundamental in LP and Sobolev spaces: elements of LP(X) are
equivalence classes of functions modulo sets of measure zero, and weak derivatives
are defined through integral identities that ignore such negligible sets. Thus a vector
field u(x,t) representing a Navier—Stokes solution may fail to be defined or may be
discontinuous on a null set without affecting any integral identity, energy estimate, or
distributional formulation.

Lebesgue spaces L?(Q2) and the role of measure. Let (2, £3) denote the measur-
able space consisting of the region  C R? equipped with the Lebesgue o-algebra and
Lebesgue measure £3. For 1 < p < oo, the Lebesgue space LP(€2) is defined as

LP(Q) = {f: Q — R measurable : /Q |f(z)]P de < oo}.

Two functions f and g are regarded as the same element of LP(Q) if they differ only
on a set of Lebesgue measure zero. This identification is crucial for PDE theory, since
weak derivatives and energy estimates rely on equivalence classes rather than pointwise
values.

The space LP(2) becomes a normed space under

1/p
\ummnz([gﬂmwm) ,

and LP(Q2) is complete with respect to this norm, making it a Banach space. For
p = 0o, we define

L®(Q) = {f € LL.(Q) : f is essentially bounded},
[ fllzoe() = Inf{M > 0:|f(x)] < M for a.e. z € Q}.

Vector- and tensor-valued LP spaces are defined componentwise: a vector field u =
(u1,uz,u3) lies in LP(2; R3) iff each component u; € LP(2).

Mixed space—time spaces. On the product domain 2 x I equipped with the product
Lebesgue measure dx dt, the mixed spaces

LU LX), p,q e[l 00,
consist of measurable functions u(z,t) such that

1/q

quw=(ﬁ<4uuwwmfmw) < oo

(with the usual modifications for p = oo or ¢ = 00). These spaces are fundamental for
parabolic PDEs: Leray—Hopf weak solutions satisfy

u € L>(0,T; L*()) N L2(0,T; HY(R)).
Thus, for any integrable scalar field v, we write

/ W(a,t) de, o t) dedt,
Q

QxTI

the second being integration with respect to the product Lebesgue measure on €2 x I.
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Scalar, vector, and tensor-valued integrals. Integration is not limited to scalar
fields. If a field takes values in a finite-dimensional vector space, the integral is defined
componentwise. Thus:

e A wector-valued integrand u;(z) produces a vector:

Jou1dz
/ u(z)de = | [quodz
@ fQ uz dx

e A matriz-valued integrand A;;(z) produces a matrix:

(f Adx)ij ~ [ Ay d

e A general rank-(r, s) tensor field szllfj (x) integrates to a tensor of the same
rank:

JiJs .
</Tda:> :/7;711.::;.]5(33) dz.
Q i1 Q "

Integration over spacetime proceeds analogously:
/ u;(x,t) de dt, Ajj(z,t)dadt,
QxI QxI
each producing the corresponding tensor.
Such tensorial integrals are ubiquitous: total momentum fQ pu;, kinetic energy
fQ |u|?, moment-of-inertia tensors, and stress-resultants all arise from componentwise
integration.

Differential operators with indices. The gradient is the covector-valued operator
Vo = 9i¢ da’,

while the array dju; forms a rank-(1,1) tensor.
The divergence of a vector field is the contraction

V - u = du;.
The divergence of a matrix field o is the vector field with components
(V-0); = 0j0i;.
The Laplacian is the scalar second-order operator
A = 0;0;,
acting componentwise on vector fields:
(Au); = 0j0ju;.

The advantage of tensor indexing is that it expresses the nonlinear structure of the
equations without hiding coordinatewise interactions. For instance, the advective term

(u-V)u = ujoju;

makes clear that the ith component of the velocity changes along the direction of u
through the directional derivative u;0;.

Strong and weak derivatives; distributions. Fluid mechanics naturally interacts
with distribution theory, because the velocity and pressure fields in physically relevant
solutions are rarely smooth. Instead, they belong to Lebesgue or Sobolev spaces where
derivatives must be understood in a weak (distributional) sense.
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To make this precise, let  C R? be a spatial domain equipped with Lebesgue
measure dx. A scalar field

¢o: Q2 —R
is said to have a strong partial derivative 0;¢ at a point x €  if the limit

. ¢(x + he;) — ()
exists. Here e; denotes the ith standard basis vector of R3.

However, strong differentiability is too restrictive for weak solutions of the Navier—
Stokes equations. We therefore enlarge our viewpoint and admit derivatives under-
stood through their action on test functions. A test function is a smooth, compactly
supported function

p € (),
and the collection of all such functions is denoted D(2).
A scalar field ¢ € L () is said to have a weak derivative ;¢ € L () if for all

o € C2(Q), e
/¢3i90d$= —/(3i¢)90d$-
Q Q

This identity is interpreted as an integration-by-parts formula in which the boundary
terms vanish because ¢ has compact support. The function 0;¢ is then the derivative
of ¢ in the sense of distributions.

Vector and tensor fields admit weak derivatives componentwise. A vector field

u: Q — R3, u(x) = (u1(x), uz(z), uz(z)),

belongs to the space of distributions D’(Q2) if each component u; defines a continuous
linear functional on test functions. The weak derivative J;ju; is defined by

/uiajgpdx— —/(8jui)g0dx Ve C°(Q).
Q Q

Weak divergence of vectors and tensors. Using the same principle, we define the
divergence of a vector field u; distributionally by

/(V-u)g@dx:—/ui&wdx,
Q Q

so that the weak divergence is the distribution V - u € D/(Q) satisfying the above
identity.

If 0;; is a matrix field (rank-(1,1) tensor), its divergence is the vector field with
components

(V- 0)i = 0j0i

in the distributional sense:
/(V c0);pide = —/ oij 0jp; dx, i € C°(Q).
Q Q
Weak Laplacian. The Laplacian of a scalar field ¢ is defined distributionally by
[@orede= [ as00ds,  vpeco),

where the right-hand side is well-defined whenever ¢ € HL ().
The weak Laplacian of a vector field is computed componentwise:

(A’LL)Z = Bjajui € D/(Q)
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These constructions are indispensable in fluid analysis because Leray—Hopf weak
solutions have finite kinetic energy but may fail to be pointwise differentiable. Weak
derivatives allow the Navier—Stokes equations to make sense despite this low regularity.

Function spaces and regularity assumptions. Weak formulations of the Navier—
Stokes equations rely on a functional-analytic framework which is often intimidating
to students; we will endeavor here to make it clear. The basic building blocks are
the Lebesgue spaces LP(§2) and Sobolev spaces H*(Q) (or the more general W*?(Q)).
These encode the minimal integrability and differentiability required for weak deriva-
tives, energy estimates, and compactness arguments.

Lebesque spaces. For a measurable set Q C R? with Lebesgue measure dz, the space
LP(Q), 1 < p < o0, is defined by
LP(Q) = {u: Q — R measurable : / lu(z)P de < oo} )
Q

Two functions are identified if they agree almost everywhere. Endowed with the norm

1/p
ey = ( / ru\pdw) ,
Q

LP(Q) is a Banach space. For p = oo, one defines the essential supremum norm

[ull L () = esssupyeq [u()].

Vector- and tensor-valued LP spaces are defined by requiring each component to lie in
LP(Q).

Sobolev spaces. Weak derivatives naturally lead to the Sobolev space
WhP(Q) = {u e LP(Q) : u € LP(Q)}.
The most important case for incompressible flow is p = 2, giving the Hilbert space
3
HYQ) = W2(Q),  luldng = lulda + 3 10l 2.
i=1

Weak derivatives are understood in the sense of distributions, so that d;u satisfies
/u@igodx:—/(aiu)godx Ve Cr().
Q Q

The Sobolev space H' () is the canonical energy space for incompressible flow, since

the kinetic energy
1
/ (u(z, £)[2 dz
2 Ja

controls the L? norm, and viscosity controls the H' norm through [|Vul| 2.
Divergence-free spaces. Define
L2(Q) = {u € L*(R?) : Q;u; = 0 in D'(Q), u-nlsg = 0},
the space of solenoidal vector fields. Similarly define
HY Q)= HY(Q)NLA(Q).

These are closed subspaces of L?(€2) and H'(Q), respectively, and capture the incom-
pressibility constraint.
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Bochner spaces and mixed space—time norms. Parabolic PDEs require function spaces
on ) x I where the time variable is treated separately from space. For a Banach space
X (e.g. X = L3(Q) or X = H'(Q)), the Bochner space

LY(I; X) = {u: I — X Bochner-measurable : ||u(t)||x € LI(I)}

consists of time-indexed functions with values in X. The norm is

1/q
umuyi—(Zwum&dQ |

with the obvious modification when ¢ = oc.
For fluid dynamics, the fundamental spaces are

u € L°(0,T; L2(Q)) and u € L*(0,T; H:(Q)),

meaning:

finite kinetic energy: sup |[ju(t)|| 2 < oo,
te[0,7)

T
finite dissipation: / [Vu(t)||2, dt < co.
0

The Leray—Hopf framework. A Leray—Hopf weak solution of the incompressible Navier—
Stokes equations satisfies:

w € L0, T; L;(Q)) N L*(0,T; Hy (),
dyu € LA3(0,T; H-*(Q)) (distributional time derivative),
the weak form of the momentum equation

T T
/ / (uiatgoi + uju; 8j<p7; + (9Z'uj 8i<pj) dx dt = / / fi i dxdt,
0 JQ 0 JQ

for all o € C°(Q x (0,T); R3) with d;¢; = 0,
the energy inequality

1 t 1 t
Slu: + [ I1Vun)Eedr < Slul3e+ [ [ 7udedr
s s JQ

for almost every 0 < s <t <T.

The spaces L?(0,T; H:(2)) and L>(0,T; L2(Q2)) are precisely those in which this
energy inequality is valid and in which the nonlinear term w;0;u; makes distributional
sense. The dual space H~!(Q) is required to interpret d;u as a distribution acting on
divergence-free test functions.

The weak formulation relies on:

L?—control of u for kinetic energy:

L?control of Vu for dissipation;

Bochner measurability to ensure u(-,t) is defined for a.e. t;

Fubini’s theorem to interchange space—time integrals;

weak compactness theorems (Banach—Alaoglu, Aubin—Lions) for existence.

This is the analytic bedrock on which all modern Navier—Stokes theory is built, and it
will remain the default functional setting throughout this work.

Parabolic weak forms. Weak formulations on spacetime require test functions with
compact support on €2 x I. We denote these by

e CX(Qx1I).
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For a vector field u;(z,t), the weak time derivative satisfies

/ u; Oppdar dt = / (Opu;) p da dt,
Qx1T

QxI
meaning that dyu; is a distribution on Q x I.
In the parabolic setting, nonlinear terms naturally produce tensorial integrands. For
example, the transport term (u - V)u appears weakly as

/ Uj 8ju,~ (%23 dz dt,
QxI
and the stress divergence as
/ 0ij 8j<10i dz dt.
Qx1

Each quantity is interpreted componentwise using the conventions above. These weak
identities allow the Navier—Stokes system to be interpreted in D'(2 x I) even when u
is far from smooth.

This framework will reappear when we pass to the vorticity formulation, the Biot—
Savart representation, and the tensorial dyadic structures central to the analysis of
nonlocal stretching mechanisms.

Importance of tensors in fluid dynamics. The power of index notation is that it
keeps the structure of the PDE explicit. The nonlinear advection term is

(u- V)u = u;0ju;,
making clear that the ith component of the velocity changes along the direction of the
velocity itself.
This notation will be essential later when we pass to vorticity, introduce the dyadic

Eij, and express curvature and entropy quantities in terms of indexed derivatives,
contractions, and tensor products.

1.2. Fluids from first principles. With this notation established, we now return
to the governing principles. We regard the fluid as occupying a region Q C R? and
evolving over a time interval I C R. The macroscopic state is described by functions

p: Qx I —(0,00), uw: Qx I =R, u(z,t) = (u(z,t), us(z, 1), us(z, t)).

These are coarse-grained averages of microscopic quantities, but at the continuum scale
they are treated as smooth functions of space and time.

The first structural constraint is conservation of mass. For any measurable region
ECQ,

d
— p(x,t)dx:—/ pu-ndS.
dt Jg OF
Applying the divergence theorem and passing to a local description yields the conti-
nuity equation
(1.1) Op+ 0i(puj) =0 in Qx1I.
In many physical regimes one assumes p(z,t) = pg for some constant py > 0. Substi-
tuting this into (1.1) and dividing by po gives the divergence-free constraint
(1.2) aju]‘ =0 in Q x I,
expressing the volume-preserving nature of incompressible flow.

Momentum balance supplies the second principle. A fluid parcel follows a trajectory
X (t) solving the ODE

X(t) = u(X (1), 1),
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and its acceleration equals the total (material) derivative of the velocity:

M%MWQZ%@*“Ww)

dt
Applying the chain rule gives the Eulerian expression
d .
(1.3) dutz = Oyu; + Uj 8jui in Qx 1.

Internal forces on a fluid parcel arise from stresses within the medium and are

encoded by the Cauchy stress tensor
o: Qx I — R¥>3, o = (0ij)1<ij<3-
Its divergence produces the internal force density:
(V . U)z‘ = ajO'ij.

If fi(z,t) denotes external force density, Newton’s second law becomes

dui
p O
A constitutive law specifies 0;; in terms of u. For a Newtonian viscous fluid, the

stress depends linearly and isotropically on the rate of strain. Writing p(z,t) for
pressure, the symmetric gradient

Dij = 5(9yu; + djus),
and using viscosity coefficients p > 0 (shear viscosity) and A € R (bulk viscosity), the
constitutive relation is
(1.5) Oij = —Pp (5@' +2u Dij + A (8kuk) 51]

Under the incompressibility constraint (1.2)), the bulk term vanishes. Moreover, one
computes

(14) 6jaij + f; in Qx 1.

aj(2,uDij) = ué?j@jui = ,uAui,

where A = 0;0; is the Laplacian. Substituting (1.5]) into ((1.4]) therefore yields
(1.6) p(@tui + uj(?jui) = —0ip + pAu; + f; in Q x 1.
Together with ([1.2]), this is the incompressible Navier—Stokes system in physical units,
expressed entirely in indexed tensor form.

For analytical purposes it is convenient to nondimensionalize so that p = p = 1.
Under this normalization, (1.6)) becomes
(1.7) Oyu; + ujﬁjui = Au; — O;p + fi, 6ju]' =0,

a system of nonlinear PDEs on the product domain € x I for the unknowns (u;,p).
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