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Active nematic flows in two dimensions, largely driven by motile +1/2 disclinations, mix them-
selves efficiently and exhibit chaos in the bulk steady state. Motivated by recent experimental
findings for three-defect braiding in cardioid-shaped domains, we investigate how this tendency
toward chaotic fluid mixing can, counterintuitively, produce certain ordered, periodic flows in con-
finement with a controllable net topological charge. We study two-dimensional active nematics
in systems with boundary conditions requiring a prescribed number of excess +1/2 disclinations,
using Beris-Edwards nematohydrodynamics simulations, alongside an agent-based, hydrodynamic
simulation approach. We find ordered flows for systems of three and four defects, and we use tools
from braid theory to show that spontaneously occurring periodic defect motions produce maximal
topological entropy. Our theory correctly predicts the generic absence of stable periodic orbits of
more than four defects in strong confinement in simulation. Our results identify the parameter
regime outside of which periodicity is lost, and allow us to probe the limits of topological entropy
production.

I. INTRODUCTION

Active systems, like all life, are far from equilibrium,
generating work from energy sources in their surround-
ings. This non-equilibrium driving prevents the stability
of ordered ground states. Strikingly, topological defects
have been found to play important and diverse roles in
the dynamics of many active systems, both natural and
synthetic, especially in the form of disclination defects
in nematic director fields [1–7]. This has inspired much
interest in describing and controlling defects and their dy-
namics for fundamental understanding and for possible
microfluidic and industrial applications. To these ends,
model active nematic systems have been constructed in
vitro from biological components. One common method
[8, 9] involves microtubule bundles suspended in a fluid
with ATP-powered kinesin dimers, which walk along the
microtubules, pushing them in opposite directions and
thereby injecting extensile activity into the system. With
model systems such as these, much has been learned
about defect control [10–13] and ordered flows [14, 15].

Bulk active nematics are known to exhibit chaotic de-
fect motion [16], and much work has been done in creat-
ing control mechanisms for their flow structures and dy-
namics to tame this chaos. For example, Gaussian curva-
ture tends to charge separate topological defects with the
same sign [17], substrate friction has been shown to tune
the characteristic length scales of director distortions in
active nematics [18], and topographical patterns in the
substrates underlying nematic fluids exhibit remarkable
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control over the rheological properties of the bulk [19].
The realm of defect spatiotemporal control has also been
explored using activity gradients as effective electric fields
for defect quasi-particles [20, 21], and has been achieved
experimentally with light activation of myosin molecular
motors [22].

One vital control mechanism for nematic flow struc-
tures is that of boundary conditions and the constraints
they impose on bulk systems. For example, when active
nematics are confined to a disk [23], an ordered state
is produced in which two positive +1/2 defects circle
around a common vortex core, periodically interrupted
by ±1/2 defect pair nucleation and pair annihilation.
In simulations of annuli and disks with variable wind-
ing number, defects have a tendency to self-screen excess
topological charge [24, 25] by localizing near boundaries.
This effect is prominent when active nematics are con-
fined to a channel, where they can produce an array of
vortices around which defects rotate in an alternating
“dance” [26]. The negative defects pin to the walls of
the channel allowing for the smooth motion of +1/2 de-
fects without annihilation. When periodic obstacles are
placed through the nematic bulk, a 2D vortex lattice can
be stabilized [27]. Both of these systems take place on pe-
riodic boundaries. It was recently shown that a periodic
2D plane alone can produce an ordered braiding motion
of +1/2 defects around quasi-stationary negative defects
[28]. This braiding motion was shown to be identical to
the braid conjectured, with strong numerical evidence, to
be the maximally mixing braid on a topological annulus
as measured by topological entropy [29].

Recently, Memarian and coauthors [30] showed that a
cardioid-like boundary can pin a negative defect at the
inward-facing cusp, allowing three motile positive defects
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to encircle each other in alternating swaps, in a pattern
known as the golden braid. This braid is proven to be
the optimal mixing braid for three “stirring rods” [31].

These findings highlight a need for more general un-
derstanding of how topological defect dynamics in active
nematics respond to the geometry and topology of con-
fining boundaries. In this work, we investigate governing
principles responsible for the golden braid in confined
active nematics with three +1/2 defects, and whether
similar periodic orbits can be obtained with other num-
bers of motile defects. We present a novel application of
braid theory and topological entropy, alongside numer-
ical modeling of extensile active nematic dynamics, to
predict emergent flow patterns. We demonstrate com-
monalities in defect braiding dynamics between the ex-
perimentally relevant scenario of curved boundaries with
tangential anchoring and a theoretical construct of circu-
lar boundaries with spatially varying anchoring, whose
winding encodes the net topological charge. Our mod-
eling captures and rationalizes previous observations for
two and three defects, identifies a new ordered state for
four defects, and predicts an absence of periodic braid-
ing for five or more defects. We corroborate our simu-
lated Beris-Edwards nematohydrodynamics with a new,
agent-based model of active nematic filaments coupled to
a coarse-grained fluid. We propose a topological connec-
tion between defect braiding and vortex structure in the
fluid velocity field, offering an explanation for the lim-
ited scenarios that permit periodic defect braiding and
predicting bounds on topological entropy production.

II. METHODS

A. Beris-Edwards nematohydrodynamics

We computationally model an extensile active nematic
in two dimensions, with nematic order represented by the
second-rank tensor

Qij(r) = S(r)

(
ni(r)nj(r)−

δij
2

)
, (1)

where n is the director, δij is the Kronecker delta, i and
j run over two dimensions, and S is the scalar degree of
nematic order.

We simulate Beris-Edwards nematohydrodynamics
[32] in a finite difference scheme on a square lattice, sim-
ilarly to the approach of Ref. [33], describing the coupled
evolution of the nematic order, Qij , and the flow field, u.
The time-evolution of Qij is governed by

∂tQij + uk∂kQij =

1

γ
Hij + χSEij + [Q,ω]ij − 2Tr[QE]Qij .

(2)

Here, [·, ·] is the commutator, u is the flow field, γ is
the rotational viscosity, χ is a flow aligning or tum-
bling parameter, and Eij = (∂iuj + ∂jui)/2 and ωij =

(∂iuj − ∂jui)/2 are the rate-of-strain and vorticity ten-
sors respectively. Hij is the molecular tensor associated
with the Landau-de Gennes free energy

FLdG =

∫
Ω

[
A

2
Tr[Q2]

(
1− 1

2
Tr[Q2]

)
+
K

2
(∇iQjk)(∇iQjk)

]
dΩ,

(3)

Hij = −δFLdG

δQij

= −QijA(1− Tr[Q2]) +K∇2Qij .

(4)

Here, A < 0 and sets the energy cost of a defect, K is
the Frank elastic constant in the one-constant approxi-
mation, and Ω is the nematic domain.
The time evolution of u is given by the incompressible

Navier-Stokes equations,

∂tu+ (u · ∇)u = η∇2u+
1

ρ
F− 1

ρ
∇p, (5)

∇ · u = 0, (6)

where η is the fluid viscosity, ρ is the (constant) density,
and the force density F is the divergence of a stress tensor
Πij :

Fi = ∂jΠij = ∂j [−Hij − ζQij + [Q,H]ij

+2Tr[QH]Qij −K∂iQkl∂jQkl].
(7)

Here, ζ is the activity, coupling the flow field time evo-
lution to nematic stresses. For all systems considered
here, ζ > 0, which corresponds to extensile activity.
This scheme, when simulated in periodic boundaries,

reproduces the well-known bulk behavior of “topological
chaos” [16, 33–35], generating ±1/2 topological defects
corresponding to locally melted regions of the nematic or-
der which couple to the surrounding flow field. There are
two characteristic length scales that emerge from these
equations of motion: the active length scale ℓa =

√
K/ζ

which scales with the average defect spacing, and the ne-
matic coherence length ℓc =

√
K/|A| which scales with

the average defect core radius. These length scales will
be varied to explore the regime of active steady states.
Thus, providing a non-dimensional description of them
will be of use. To do this, we normalize them by the
effective system length, given by the square root of the
system area in units of lattice spaces. For each studied
geometry, we tune the activity within a range such that
+1/2 defects are motile and fixed in number, with total
topological charge q determined by the geometry. The
activity is kept low enough to prevent spontaneous de-
fect pair production, as the regime of active turbulence
is not the focus of this study. We use the following val-
ues throughout: ρ = 1, χ = 1, K = 214, γ = 100, and
η =

√
10 · 214.
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For simplicity, we take anchoring at the boundaries to
be infinitely strong, creating Dirichlet boundary condi-
tions on Q. For the velocity field, a no-slip condition
u = 0 is applied at the boundaries.

More details are given in Appendix A1.

B. Fluid mixing and defect braiding

Tan and coauthors [16] showed that the fluid mixing
capabilities of active nematics are deducible from the
braiding motions of the worldlines of +1/2 topological
defects. The self propulsion of the +1/2 defects drives
the dynamic evolution of the Lagrangian coherent struc-
tures which connect initially infinitesimally close passive
tracers in the bulk, and is thus correlated to the produc-
tion of a positive Lyapunov exponent (Figure 1b). By
viewing +1/2 defects as self-propelled stirring rods, we
can measure the amount of stretching their dynamics in-
ject into the bulk and quantitatively distinguish dynamic
patterns by their fluid mixing capability.

We can describe this stretching by considering an in-
finitely elastic boundary enclosing the defects, which
stretches as the defects or stirring rods stretch the initial
boundary over time. A lower bound on this stretching,
corresponding to pulling the boundary line taught around
the defect cores, is given by an exponential function of
time from an initial length L0:

L(t) = L0e
ht. (8)

Here, the exponential rate of stretching h is known as the
topological entropy (Figure 1c). This scheme for viewing
topological defect dynamics is useful for several reasons.
Firstly, the topological entropy is an upper bound on
the Lyapunov exponent [36] (Figure 1b), and in experi-
ments on microtubule-based active nematics, this bound
is nearly met. Secondly, it is possible to analytically cal-
culate topological entropy in periodic flows. Hence, we
can use h as a proxy for λ, and measure the chaotic char-
acter of active nematics by measuring the stretching in-
jected into the bulk fluid.

Analytical calculation of h relies on the description of
worldlines of n positive defects within the Artin Braid
group Bn [37]. The relationship between braiding of de-
fect worldlines and fluid mixing that we calculate assumes
that the positive defects act as stirring rods, meaning
that their velocity is equal to the local fluid velocity as
would be the case if they were solid objects [16]. At any
instant, we order the +1/2 defects by projecting their 2D
positions onto a line, which we take to be the x axis but
which can be oriented in an arbitrary direction.

As time progresses, changes in this ordering of pro-
jected defect positions take place through swaps between
defects with consecutive indices i and i + 1 in the or-
dering. Each such inversion corresponds to one of two
braid generators, σi or σ

−1
i , depending on whether it oc-

curs in a clockwise (CW) or counter-clockwise motion
(CCW) respectively; in the projection, these two cases

correspond to defect i passing behind or in front of de-
fect i+1. Thus, for n defects, a set of 2(n−1) generators
completely describes the set of inversions that can occur,
and their products can describe all possible dynamics, an
example of which can be seen in Figure 1d. A braidword,
β, is a sequence of braid generators.

The braid generators can be given in the Burau repre-
sentation (see Appendix B) as (n− 1)× (n− 1) matrices

(σi)kl = δkl + δi−1,kδil − δi+1,kδil,

(σ−1
i )kl = δkl − δi−1,kδil + δi+1,kδil. (9)

This matrix representation is constructed to maintain
the Artin group relations: [σi, σj ] = 0 if |i − j| > 1,
and σiσi+1σi = σi+1σiσi+1. Importantly, this means
that a braidword can be represented as a matrix prod-
uct, and that a periodic steady state corresponds to the
application of βnc for nc cycles. In the large-nc limit,
the matrix product βnc in its eigenbasis is dominated
by its largest-magnitude eigenvalue bnc

max, where bmax is
the largest eigenvalue of β. Because the defects, as stir-
ring rods, drag the fluid with them, the minimal stretch-
ing of material contours required to accommodate the
described defect braiding grows with nc as bnc

max. The
topological entropy therefore grows linearly with nc, as
h = log(|bnc

max|) = nc log(|bmax|). Since nc is proportional
to time for periodic braiding, the slope of h(t) is propor-
tional to log(|bmax|). Note that, if the motion is periodic,
h is independent of the projection used.

We numerically compute the topological entropy for
the two-dimensional active flow by two schemes using
the flow field. In the first method, known as the Line
Stretching algorithm, we advect an initial line segment
forward in time according to the local flow, and track
the length of the newly advected contour. If the advected
segment grows exponentially in time, then the slope from
the semi-log plots of contour length over time yields the
topological entropy (Supplemental Videos 2 and 3). Sec-
ondly, we use a computational geometry-based algorithm,
known as the E-tec (Ensemble-based topological entropy
calculation) method [38]. We advect an ensemble of ran-
domly initialized passive tracers forward in time. The
E-tec algorithm computes a lower bound on the entire
system’s topological entropy using the finite trajectories
of the random ensemble. Full details are provided in
Ref. [38]. To compute the Lyapunov exponent, we ran-
domly choose a pair of passive tracers with a very small
initial separation distance and track how their separa-
tion distance evolves in time. This method quantifies
the largest Lyapunov exponent as it only measures the
maximum stretching of two nearby tracers without any
restriction on the direction of the stretching.
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III. RESULTS

A. Circular confinement with controllable
topological charge

To systematically tune the number of mobile +1/2 de-
fects, we consider circular confinement of the active ne-
matic phase while varying the anchoring direction of the
nematic director on the boundary so as to require a net
enclosed topological charge of q. In particular, with the
circular boundary ∂Ω parameterized by angle θ, we ini-
tialize the nematic order as

n
∣∣
∂Ω

(θ) = ±
(

− sin(qθ)
cos(qθ)

)
, (10)

and set the scalar degree of order, S, to
√
2. The Q-

tensor defined by Equations 1 and 10 is held fixed at
the boundaries. This boundary condition produces a net
topological charge q in the nematic domain Ω, causing the
lowest-energy states to have n = 2q topological defects
with winding number +1/2.
We first consider a circular boundary with tangential

anchoring, providing a net charge of q = +1, thus re-
quiring two +1/2 topological defects. This system was
realized by Ref. [23] and, similarly, we find that the two
positive defects circle a common direction, creating the
braidword {σ±1

1 } and zero topological entropy, as shown
in Figure 2 and Supplemental Video 1. In the experi-
mental system of Ref. [23], the co-rotating defects deviate
from their quasi-circular trajectories upon the nucleation
of a defect pair from the boundary, whose negative defect
annihilates one of the bulk defects. Beris-Edwards nema-
tohydrodynamics, however, do not observe such breaking
of periodicity below the activity threshold to active tur-
bulence [39–41]. Likewise, we find that the co-rotating
defects are an active steady state. The only braidwords
that can be created in B2 (i.e., with two defects) are
{σ±1

1 } and the identity, which both have a maximum
eigenvalue of 1. This is consistent with the fact that
two stirring rods are incapable of producing chaotic mix-
ing [36].

For q = 3/2, we observe that the three +1/2 defects
spontaneously produce the “golden braid” observed in
cardioid-shaped confinement in Ref. [30]. Consecutive in-
version events in the golden braid alternate between CW
and CCW, and the same two defects are never swapped
before one of them is swapped with the third. Traces of
the defect trajectories, along with the worldlines of their
x-projections, are shown in the top row of Fig. 3a,b and
in Supplemental Video 2. The golden braid is described
by the braidword {σ1σ

−1
2 }, which yields a topological en-

tropy of h = 2 log ϕ0, where ϕ0 = (1+
√
5)/2 is the golden

ratio, for which the golden braid is named [37]. We nor-
malize this by the number of swaps, two in this case,
where a swap corresponds to a co-linear arrangement of
defects throughout the trajectory. This prediction agrees
well with the topological entropy as numerically calcu-

lated using both the Line Stretching and E-tec schemes
(Fig. 3c).

The boundary condition producing q = 4/2 results in
a periodic active steady state of four +1/2 defects, which
to our knowledge has not previously been studied in an
active nematic. Defect trajectories and projection world-
lines are shown in the bottom row of Fig. 3a, b and in
Supplementary Video 3. The braidword for this motion
is {σ1σ3σ2σ

−1
1 σ−1

3 σ−1
2 }. Because the associated topolog-

ical entropy is h = 2 log(ϕ1), where ϕ1 = 1 +
√
2 is the

silver ratio, this braid is known as the “silver braid” [37].
Unlike the q = 3/2 case, here the +1/2 do not all fol-
low the same trajectory; instead, there are two intersect-
ing, mirror-image trajectories, each containing two of the
four defects. This braid is topologically equivalent to the
“Ceilidh dance” [26] with four +1/2 defects, with the dis-
tinction that the topology of our system is a disk, not an
annulus, and therefore lacks the pinned negative defects
seen in annular confinement. Since all four defects are
co-linear twice throughout the trajectory of this braid,
we normalize the topological entropy by two swaps.

In contrast to the systems of two, three, and four de-
fects, we find that boundary conditions with q between
5/2 and 10/2 do not spontaneously adopt periodic mo-
tions of their five to ten +1/2 defects, as seen in 4a.
The ground states for a passive nematic in the same ge-
ometries are shown in Fig. 4b, revealing n-fold rotational
symmetry in the equilibrium locations of n +1/2 defects
close to the boundary. Across all studied active length
scales ℓa and nematic coherence lengths ℓc, these systems
do not exhibit a periodic motion of defects as their active
steady state. We do observe a brief time-regime in which
the defects appear to follow regular braids generalizing
the structures observed for lower n = 2q, with braidword
given by

{σnσn−2...σn−1σn−3...σ
−1
n σ−1

n−2...σ
−1
n−1σ

−1
n−3...}. (11)

With n = 4, this braidword describes the observed silver
braid for q = 4/2. For large q, Eq. 11 gives a topological
entropy of h ≈ 2.88. However, for n ≥ 5, the predicted
braid is replaced by apparently random motions partway
through the braidword.

Despite the lack of periodic braiding in n ≥ 5 defects,
we observe a great deal of structure in the time-averaged
vorticity, plotted in Fig. 4c. We will focus on the n = 5
defect case when discussing unstable systems for the rest
of this work, as our understanding of the instability of
higher charge cases applies to all n ≥ 5 systems.

It is interesting to note that ℓa has to be decreased as
q increases in order for the defects to remain mobile. As
seen in Fig. 4a, some defects in the q = 9/2 and q =
10/2 systems remain close to their passive ground-state
positions throughout the simulation. This is consistent
with previous work showing that defects screen boundary
charge [24], with the distinction that here we observe this
effect in positively-charged defects.
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B. Boundary-imposed forces

To understand the emergence of the observed defect
braids for n ≤ 4, as well as the generalizability of the dy-
namics they realize, we examine the relationship between
defect trajectories and the forces and torques imposed by
the boundary conditions. We observe that the tangent to
a defect trajectory at a given point tends, when possible,
to be parallel to a straight line drawn through some point
on the boundary and oriented along the director there.
From Eq. 10, these lines are given by

f(u) = (y − r sin(u)) + cot(qu)(x− r cos(u)) = 0,

u ∈ [0, 2π).
(12)

Here, r is the radius of the circular confinement. This
alignment can be understood geometrically as a dynam-
ically stable situation for a self-propelling +1/2 defect.
Since the defect experiences an active force in the direc-
tion of its comet-head, its tail is the only side that can
be stably aligned with a fixed director at the boundary.
This idea is illustrated in Figure 5a, where defects with
three distinct orientations are drawn along with a line on
which the director is imagined to be held fixed parallel
to the line. The only defect that is aligned with the fixed
director more than instantaneously is the one whose self-
propulsion lies along the line. If we now consider the
family of lines defined by Eq. 12 (Fig. 5b), the scheme
of orienting defects parallel to these lines results in a dy-
namic stability for points in the interior region, whereas
for certain regions near the boundary, many possible tra-
jectories converge, pushing defects into the interior re-
gion.

The boundary between these two types of regions is
the envelope of the family of lines, which is tangent at
each point to one such line. The unique solution for this
envelope satisfying f(u) = ∂uf(u) = 0 is given by

x(u) =
r

2q
[(2q − 1) cos(u) + cos((2q − 1)u)]

y(u) =
r

2q
[(2q − 1) sin(u) + sin((2q − 1)u)],

u ∈ [0, 2π).

(13)

These are the equations defining an epicycloid [42]. Ge-
ometrically, epicycloids are constructed by tracing the
path of a point on a circle of radius rc as it rolls on
the circumference of a circle r. In this construction,
r/rc = 2(q − 1) = n − 2, which is the number of cusps
in the resulting closed curve. For q = 3/2, 4/2 and 5/2,
the envelopes are called a cardioid, a nephroid, and a
trefoiloid respectively[42].

We observe that these epicycloid envelopes predict cer-
tain important features of the simulated defect trajecto-
ries, as shown in Figure 5c. Defect trajectories remain
approximately inside the envelopes. Furthermore, over
certain regions beginning near a cusp in an envelope and
ending at that cusp, the defect trajectories approximately
coincide with the envelope while undergoing large-angle

reorientation. We can understand how active forces yield
this relationship by identifying

Factive|∂Ω = −ζ∇·Q|∂Ω =
Sζq

|r|

(
cos((2q − 1)θ)
sin((2q − 1)θ)

)
. (14)

It is useful to compare the right-hand side of Eq. 14 to
Factive = Sζ(S−B) where S = n(∇·n) is the splay vec-
tor and B = n × (∇× n) is the bend vector. The bend
contribution along the boundary has squared magnitude

|B|2 =
1

S2ζ2
|n · Factive|2 =

q2

r2
sin2((q − 1)θ),

which is maximal at places where the anchoring is tan-
gential, and the splay contribution has squared magni-
tude

|S|2 =
1

S2ζ2
|n× Factive|2 =

q2

r2
cos2((q − 1)θ),

which is maximal at places where the anchoring is ra-
dial. We find that the defects tend to move along tangen-
tially anchored boundaries, where the bend mode dom-
inates the active force, until the defect reaches the next
radially-anchored location where the splay mode of the
active force reorients the defect trajectory into the bulk.
These splay maxima occur at the θ-value of a cusp in the
envelope curve, as each cusp lies along a line connecting
the center of the system to a boundary point where the
anchoring points radially along that line. Thus, defects
experience maximum boundary-imposed splay at the en-
velope cusps, pushing the defects toward the center as we
observe.
The utility of the epicycloid envelopes is then two-fold:

they can predict all of the locations of sharp reorienta-
tion events in the defect trajectories, and (consequently)
they approximate an effective boundary for the region
of observed defect motions. These control mechanisms
hold both for the time-periodic (n ≤ 4) systems and the
non-periodic (n ≥ 5) systems; hence, we can use them
to understand the defect braiding dynamics that they
permit or prohibit.

C. Flow-field structure

Nematohydrodynamics produces a two-way coupling
between the structure of the flow velocity field u and
the director field n, and we see this reflected in the cou-
pled topologies of the two fields. In addition to deter-
mining the reorientation sites of defect trajectories, the
active force encoded by the boundary conditions acts on
the flow field. Thus, understanding how the structure of
the flow field is mutually-consistent with the boundary-
imposed active force will be useful for characterizing the
general dynamics of n = 2q positive defects with anchor-
ing of winding q. Here, by fixing the director at the
boundary with nontrivial winding, we set up patterns of
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active force by which we can sculpt the dominant flow
structures within the bulk.

To elucidate the coupling of the director and velocity
fields, we examine the instantaneous and time-averaged
vorticity of the flow structures underlying the observed
braiding dynamics. We define the boundaries of vortices
using the second invariant of the velocity gradient tensor,
known as the Q-criterion [43]:

Q =
||ω||2 − ||E||2

2
. (15)

Positive values of Q correspond to vorticity-dominated
regions and negative ones to strain-dominated regions.
Thus, the closed isolines of Q = 0 provide well-defined
vortex boundaries.

Defect motions and vortex structure are strongly
linked through the Q-criterion: the trajectories of +1/2
defects in simulated and experimental active nematics
data closely follow isolines of Q = 0, an observation ra-
tionalized by the fact that the Stokes-flow solution for
an isolated +1/2 defect lies on a Q = 0 isoline [43]. We
observe this “self-constraint” between the n and u fields
to be well-obeyed in our system, for both periodic and
aperiodic motion as exemplified by the snapshots in Fig-
ure 6a. The instantaneous and running time-averaged
fields of both ω and Q, along with their standard devi-
ations, are shown for the q = 3/2, 4/2, and 5/2 systems
in Supplemental Videos 4, 5, and 6.

Importantly, we find that the swapping of defects ne-
cessitates a topological change of Q = 0 isolines: Because
each +1/2 defect is always at a location with Q = 0 in-
stantaneously, and the Q = 0 subset consists of closed
curves each surrounding a vortex (Q > 0), a defect can
only move from one vortex to another by instantaneous
intersection of two Q = 0 loops into a “figure eight”.
These intersections are visible in some of the snapshots
of Fig. 6a. In order for the circulation direction of the
vortex to be consistent with the +1/2 defect’s heading,
these direct vortex-swapping events only take place be-
tween vortices of opposite-sign vorticity.

However, defects can also swap with one another be-
tween same-sign vortices by a more complicated chore-
ography, seen in the q = 4/2 system (Fig. 6a middle
row): Two CW vortices merge into one, while coming
temporarily into contact with the two CCW vortices.
Two defects, previously on the two separate CW vor-
tices, are now pinned to these two Q = 0 junctions while
continuing to circulate clockwise. Then, the CW vor-
tex splits again into two while breaking contact with the
CCW vortices. The flow field has now returned to its
original structure, but with two defects having swapped
CCW vortices. The mirror-image process then occurs to
allow swapping of the other two defects between the two
CCW vortices. These alternating swaps produce the two
distinct, overlapping defect trajectories in Fig. 5c.

The time-averaged vorticity for these three systems,
plotted in Fig. 6b, is markedly dominated by 4(q− 1) al-
ternating gyres of opposite vorticity. The time-averaged

behavior dominates the instantaneous dynamics, in the
sense that we measure a small noise-to-signal ratio, de-
fined as the spatially averaged ratio between the standard
deviation and the time average of the vorticity over all
lattice points. These ratios are 0.1048 for the 3/2 system,
0.0069 for the 4/2 system and 0.0007 for the 5/2 system.
Gyre boundaries divide adjacent regions of alternat-

ing time-averaged vorticity, partitioning the domain.
Each gyre boundary advects material either toward or
away from the fluid boundary layer, where the vorticity
changes sign to accommodate the no-slip boundary con-
dition [33, 44]. (For q = 3/2, the single gyre boundary
moves material away from one side of the circle and to-
ward the other.) The locations where gyre boundaries
advect material away from the boundary coincide with
the angular positions of the cusps in the envelope curves
plotted in Fig. 5b. Equivalently, this means that the
lobes between cusps on the envelope also each contain
two counter-rotating domains but in such a way that the
flow advects material along the boundary. This matches
our findings that splay deformation fixed by the bound-
ary condition scatters defects into the bulk while fixed
bend polarization allows them to travel along the bound-
ary. The cusps thus behave similarly to “wall defects”
observed in experiment to arise spontaneously in active
nematics confined to a disk [25].
The global consistency of these dynamics can be un-

derstood schematically as a directed graph over each en-
velope, as shown in Fig. 6c. Each node corresponds to
either a cusp or a bulge, and directed edges signify the
local flow direction such that the gyre structure is sum-
marized by cycles in the graph. Importantly, the net de-
gree of every node is 0, representing the incompressibility
constraint. This yields a unique gyre structure for every
q, in good agreement with that measured in Fig. 6b.
To find a general expression for the number of gyres,

we can count the sectors of the active force field at the
boundaries as the number of times the active force vector
is aligned parallel or antiparallel to r̂ as we vary over
orientations in the plane. Thus, the number of gyres is
given by the number of solutions to

r× Factive = Sζq sin(2(q − 1)θ) = 0, (16)

from which we find that the number of gyres grows as
4|q − 1|, as we observe numerically (Fig. 6b). In con-
trast, the number of defects grows as 2q. This leads to
the simple but important observation that for q > 4/2,
there are more gyres than defects. While there may be
time-variation in the number of vortices, the active force
field required by the boundary conditions demands that
the number and structure of vortices give, on average,
the gyre structures of Fig. 6b. As seen in Fig. 6a and
Supplemental Video 6, vortices without defects are un-
stable and tend to decay in size; some disappear entirely,
to be replaced by nucleation of a new Q = 0 loop else-
where in the system. This instability is consistent with
the previously observed enhancement of vortex stability
by the presence of a +1/2 defect [33, 43].
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The presence or absence of such defect-free vortex
“holes” is important to defect braiding because +1/2
defects tend to distribute themselves evenly among the
available Q = 0 loops (presumably due, at least in part,
to elastic repulsion between like-sign defects) so a hole
will be available for a defect to transfer to only if the
vortices outnumber the defects. Otherwise, a defect can
only transfer to another Q = 0 loop by a coordinated
swap with another defect. Sequences of these pairwise
swaps are required for periodic braiding and maximal
topological entropy production, which thus occurs only
for q = 3/2 and 4/2.

Understanding of this complex interplay of flow-field
and director topologies is facilitated by a schematic rep-
resentation of defect paths consistent with the time-
averaged vorticity. This representation, shown in Fig. 6c,
takes the form of a directed graph whose edges imply a
“flow” consistent with the corresponding gyres of Fig. 6b.
One node is placed for each pair of adjacent, counter-
rotating gyres. A defect encountering a node can exit it
along either of two outward-directed edges, one of which
keeps the defect on the same gyre, while the other rep-
resents a transfer to the neighboring gyre. For q = 3/2
or 4/2, such a transfer necessarily causes a temporary
“overcrowding” of one gyre by two defects, leading to
the transfer of the gyre’s original defect to another gyre.
For q = 3/2, there is only one other gyre available, while
for q = 4/2, transfer to the single empty gyre is favored,
ensuring a pairwise swap of the two transferring defects.

D. Geometrically structured confinement with
tangential anchoring

In order to realize the braiding patterns seen in cir-
cular confinement with variable topological winding im-
posed by the boundary, we require a way of modulat-
ing the mobile bulk charge in systems with strong tan-
gential anchoring, which is the only type of anchoring
currently producible in active nematics [9]. To do this,
we make use of the fact that the tangent vector to the
envelope curves at the cusp picks up an instantaneous
rotation of −π. For the director field, strong tangential
anchoring at the cusp is equivalent to replacing the cusp
with a smooth arc and pinning a −1/2 topological defect
there. Each cusp is therefore topologically balanced by
an additional +1/2 defect in the bulk besides the two
already present inside a circular boundary. Recent ex-
periments by Memarian and coauthors [30] demonstrated
exactly this approach with a microtubule-kinesin active
nematic confined in a cardioid-shaped region, resembling
the single-cusp, q = 3/2 epicycloid above. The pinning
of a negative defect at the cusp resulted in a third +1/2
defect in the bulk, leading to an experimental realization
of the golden braid dynamics. Additionally, recent the-
oretical work [45] predicted the same braiding dynamics
in an analytical, effective-quasiparticle model of defect
motion.

Here, we generalize this experimentally accessible ap-
proach to tangential-anchoring boundaries with more
than one cusp, allowing control over the net topological
charge, by assuming confinement geometries to be similar
to the epicycloid envelope curves studied in the previous
section. Specifically, to regularize the cusps of the epicy-
cloids into C1-continuous curves, we use as our family
of boundary surfaces the epitrochoids defined parametri-
cally by

x(u) =
r

2q
[(2q − 1) cos(u) + d cos((2q − 1)u)]

y(u) =
r

2q
[(2q − 1) sin(u) + d sin((2q − 1)u)]

u ∈ [0, 2π),

(17)

where 0 ≤ d ≤ 1 and continuously interpolates between
the epicycloids and a circle. These represent paths trac-
ing a point on a circle of radius r at distance r · d from
its perimeter as it rolls on the circumference of a circle
R. We use d = 0.99 to approximate the epicycloids near
their sharp limit.
In an epitrochoid with q = 3/2 or 4/2, we obtain the

golden and silver braids (Figure 7b) as predicted by the
corresponding epicycloid envelope in the previous sec-
tion. Here, this occurs through the pinning of a −1/2
defect to each of the (regularized) cusps as seen in 7c,
leaving three or four +1/2 defects to interact in the bulk.
The geometry of the −1/2 defect reorients the bulk di-
rector field nearby, creating the splay mode seen at the
envelope cusp in circular confinement, and thus provid-
ing the inward active force that promotes the double or
quadruple gyre flow structure. In general, we find that
the pinning of negative defects changes the active force
produced by the new effective boundary and realizes the
same topology of active force structure described in equa-
tion 14 in circular confinement, and thus the same num-
ber of gyres.
Interestingly, this system exhibits a strongly

metastable regime, shown in Supplementary Videos
7 and 8, in which one or two defects are absorbed into
a cusp and then emitted during part of the braid cycle.
Within the braiding taxonomy this is simply rectified
by permitting that the braid strands can jump from
the absorbed defect to the corresponding new positive
charge once it nucleates from the cusp into the bulk
(Fig. 7a).

E. Agent-based active nematic filament simulations

To assess the generality of the theory, we note the im-
portance of density fluctuations in active microtubule ex-
periments which are absent in the Beris-Edwards model.
We simulate a three-dimensional system of active micro-
tubules confined in a thin layer vertically and in a car-
dioid geometry laterally, using an agent-based, coarse-
grained model of active bead-spring filaments as de-
scribed in Appendix A 2. A small thickness, L, in the
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third dimension allows filament cross-over and is crucial
for reproducing defect dynamics. Uniquely, the active
filaments are coupled to a two-dimensional underlying
coarse-grained fluid layer. This fluid layer provides two
important properties otherwise missing from the coarse-
grained active model: long-range hydrodynamic inter-
actions and a momentum-conserving thermostat. The
hydrodynamic interactions permit similar density fluctu-
ations to microtubule experiments. Temperature control
was achieved using a pairwise dissipative particle dynam-
ics thermostat and was passed through to the active layer
of the simulation via an active-fluid particle interaction
moderated by an artificial distance offset.

Our agent-based model closely mimics experimental re-
alizations of strongly confined microtubule-kinesin active
nematics [15, 23]. Simulations consist of 64, 000 active
particles comprising 800 filaments, each with 80 beads,
and an additional 3068 fluid particles. The time evolu-
tion of these active filaments is shown in Figure 8a and
in Supplemental Video 9. Upon careful observation of
the active filaments, we observe the existence of three,
long-lived, +1/2 defects as predicted in a system with
q = 3/2. By interpolating bead-spring orientation to
a director field, we can more clearly see the +1/2 de-
fects and their trajectories in Figure 8b. We track these
three defects over a period of simulation time and observe
that their motion is consistent with the golden braid as
seen in the nematohydrodynamics system with q = 3/2,
in that the defects perform alternating swaps from each
half of the cardioid. In addition, we also see the dou-
ble gyre flow structure from the time-averaged vorticity
of the agent-based model (Figure 8c). This double gyre
structure also compares favorably to the time-averaged
vorticity of the q = 3/2 nematohydrodynamics model
shown in Figure 6b, containing alternating positive and
negative values of vorticity in the upper and lower halves
of the cardioid.

Unlike in the continuum nematohydrodynamics model,
the agent-based model incorporates non-uniform density,
where defects can be annihilated or created on the bound-
ary between empty space and the bulk. As a result, at
any given time, there may be an additional defect pair of
+1/2 and −1/2 defects that quickly annihilate. However,
low-density regions are a characteristic of the experimen-
tal systems of active kinesin-driven microtubules. We
predict that the agent-based model, which has an active
length scale and nematic coherence length that are diffi-
cult to estimate, is close to the boundary between golden
braiding and metastability in Fig 7b.

IV. DISCUSSION

Our findings represent an important step in under-
standing the emergence and stability of ordered flows
in active nematics. In particular, we have shown that
by pinning defects on boundary features or by intro-
ducing extra winding into the anchoring conditions on

a disk, we both control the minimum number of motile
+1/2 defects in the bulk and tune the active force land-
scape that guides the gyre structure of the time-averaged
flow vorticity. Thus boundary conditions provide a way
of accessing periodic, autonomous braiding dynamics of
three or four +1/2-defect “stirring rods” with maximal
production of topological entropy. Although analogous
maximal-mixing braids exist in theory for n ≥ 5 +1/2
defects, our simulations reveal that these periodic orbits
are unstable to apparently random defect motions, due
to the excess of gyres over the number of +1/2 defects.
This result suggests a general principle that matching
the number of gyres to the number of +1/2 defects is a
strategy for producing ordered flows in active nematics.
This is also seen in periodic channels, where a 1D vor-
tex lattice produces equal numbers of +1/2 defects and
gyres, a balance that dynamically stabilizes a periodic
“dance” of defects [26]. We can interpret that dance as
equivalent to a silver braid, as we observed in circular
confinement with q = 4/2 winding boundary conditions,
but tiling the channel with interconnected unit cells of
the braiding domain. Further, the presence of coher-
ent flow structures in confined active nematics has been
seen in channel confinement [25, 46] as well as under spa-
tially periodic patterning of activity and external forces
[14, 47].

Importantly, for the n = 3 and 4 defect systems, the
braids found are optimally mixing for their respective
number of stirring rods, supporting the notion that when
not dynamically forbidden, active nematics have a spon-
taneous tendency to maximally mix their fluid environ-
ments [28]. While our findings do not establish sponta-
neous defect braiding in numbers larger than four, ad-
ditional control mechanisms such as internal obstacles
could potentially stabilize different braiding flow struc-
tures and defect dynamics.

Further, our results support the findings of Ref. [43]
and reveal new applications for it: Q = 0 isolines pro-
vide a subspace on which +1/2 defects necessarily lie.
Not only are our results consistent with this rule, but
this “self-constraint” interestingly requires that the de-
fect swap events represented by braid generators are co-
incident with topological changes in the flow structure,
in the form of reconnections in the Q = 0 isolines.

The qualitative agreement of our agent-based model
with the defect braiding and flow gyre structure predicted
by our theory demonstrates the robustness of this topo-
logical approach. While the coupling between nematic
order and flow takes a very different form in the agent-
based model compared to Beris-Edwards nematohydro-
dynamics, both models support the close relationship
of director topology and flow-field topology. The pre-
dictability of the vortex structure found in our work sug-
gests that predictable dynamics from boundary-imposed
active forces may be robustly observed in a broader range
of confining geometries. For example, a spatially periodic
tiling of obstacles can create effective active pumps [48]
whose spontaneous flow structures are deducible from the
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spatially periodic active forces generated at the obsta-
cle boundaries. This principle can also create regular
vortex lattices with effective anti-ferromagnetic ordering
[49]. Ordered flow structures in active nematics can in
turn set up ordered flows in passive liquid crystals with
which they are in contact[14], which may be used to guide
micro-swimmers in living liquid crystals [50].

Our findings indicate a one-to-one correspondence be-
tween the topologies of the director, the active force, and
the time-averaged flow velocity field. This suggests that
active force tuning is a robust driver of time averaged dy-
namical behavior for active nematics. Specifically, if we
consider n +1/2 defects in the bulk, any closed contour
around them must capture a q = n/2 winding of the di-
rector, and thus produce an active force with a winding
of 2q− 1, as is consistent with equation 14. Further, the
topology of the active force necessitates that there are
4|q − 1| gyres in the flow field if the average flow follows
the stream lines of the active force. As all three topolo-
gies are preserved under continuous transformations, our
analytic calculations for circular confinement hold for ar-
bitrary contours. Interestingly, our prediction of 4|q − 1|
gyres in the time-averaged flow field agrees with the find-
ings of Ref. [23] for circular confinement with q = 2/2, in
that experiments find circularly confined active nematics
exhibit periodic switching of the handedness of the single
gyre, and thus zero time-averaged vorticity.

We have demonstrated numerically that the sponta-
neous golden braiding of defects in cardioid confine-
ment (Ref. [30]) are one example of a more general phe-
nomenon, in which active nematics spontaneously adopt
optimally mixing defect braiding motions if these are con-
sistent with, and suitably constrained by, the topology

of vortices in the flow field. In confinement with circular
geometry and controllable winding in the anchoring, we
observed these maximally mixing periodic states in the
form of the golden braid for n = 3 defects and the silver
braid for n = 4. Not only are these braids consistent
with those we find with tangential-anchoring boundaries
with n− 2 cusps, but we obtained an emergent rationale
for this connection through the resemblance of the latter
boundaries to the envelope curves of the variable anchor-
ing in our circular-boundary systems. Those envelopes
govern defect trajectories for both periodic (n ≤ 4) and
aperiodic (n ≥ 5) defect motions. The effective bound-
aries created by the envelopes, together with the gyre
structures required by active forces at the boundaries,
provide new principles for geometrically and topologi-
cally controlling the motions of topological defects in ac-
tive nematics, potentially opening new avenues for fluid
mixing applications.
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Appendix A: Numerical methods

1. Nematohydrodynamics

a. Pressure field

In the incompressible Navier-Stokes equations 5, 6, the
pressure field, p, plays the exclusive role of maintaining
Eq. 6. This is achieved in our numerical implementation
by taking the divergence of Eq. 5 and solving the stan-
dard pressure-Poisson scheme [51], keeping terms up to
second order in derivatives of u:

∇2p = −∇ · (u · ∇)u+∇ · 1
ρ
F−∇ · ∂tu|t (A1)

with a Laplacian stencil of p, such that ∇ · ∂tu|t+δt = 0.
We integrate equations 2 and 5 forward in time with

a time step of δt = 1e−4 using the Euler method [52].
Advection terms for u and Qij are calculated using an
upwind scheme which computes advection coming from
the direction of the local flow field [53].

b. Boundary Conditions

To simulate strong tangential anchoring on an arbitrar-
ily curved boundary with local unit tangent τ̂ , we apply
Dirichlet conditions on Qij

∣∣
∂Ω

:(
Qxx

Qxy

) ∣∣∣∣
∂Ω

(r) = S

(
τ2x − 1/2
τxτy

)
. (A2)
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In order to provide the force from such a boundary
that would result in this anchoring, or equivalently that
∂tQij = 0, we set the molecular field along ∂Ω based on
equation 2 as

Hij

∣∣∣∣
∂Ω

= γ[uk∂kQij − χSEij + [ω,Q] + 2Tr[QE]Qij ].

(A3)
For the flow velocity field, we use a no-slip boundary con-
dition, u

∣∣
∂Ω

= 0. Equation A1 is an instance of Poisson’s
equation, which has a unique solution so long as Neu-
mann or Dirichlet boundary conditions are defined. To
do this, we consider that there are no outflows or inflows
along the boundary, ν̂ ·u

∣∣
∂Ω

= 0, and derive a Neumann

boundary condition using ν̂ · ∂tu
∣∣
∂Ω

= 0, with ν̂ being
the outward-pointing unit normal to the boundary and
with

ν̂ · ∂tu
∣∣
∂Ω

= ν̂ ·
[
−(u · ∇)u+ η∇2u+

1

ρ
F− 1

ρ
∇p

] ∣∣∣∣
∂Ω

.

(A4)

Upon applying the no-flux condition at the boundary,
ν̂ · u|∂Ω = 0, and the corollary that the tangential deriva-
tive of the normal component of velocity must vanish,
∂τu = 0|∂Ω, we obtain the following Neumann condition
for the normal derivative of the pressure at the boundary:

∂νp
∣∣
∂Ω

=
(
ρη∇2uν + Fν

)
|∂Ω. (A5)

Note that uν

∣∣
∂Ω

= 0 even if there is slipping, which
necessarily occurs along τ̂ . Importantly, our scheme is
generalizable to boundaries with variable curvature.

2. Agent-based model

The three-dimensional coarse-grained dynamical sim-
ulations represent active microtubules as bead-spring
chain filaments, confined within a volume defined by a
cardioid-shaped area with a small thickness, L = 3.2σ,
in the vertical direction. Interactions between beads are
represented by a short-range, repulsive, Weeks-Chandler-
Anderson interaction with an additional short-range at-
tractive depletion force:

U(r) =

{
4ε

[(
σ
r

)12 − (
σ
r

)6]
+ fdepr, if r < 2

1
6σ,

0, if r ≥ 2
1
6σ.

(A6)
The bead-bead interaction has parameters of ε = 0.5,
σ = 1.0, and the additional depletion force is fdep =
0.25. Bonded interactions between adjacent beads on
each chain are represented as linear elastic springs with
potential:

Ubond(r) =
k1
2
(r − l0)

2 (A7)

where l0 is the equilibrium length of the spring and k1 is
the spring constant. Bond-bending terms are represented

by second- and third-neighbor linear spring interactions
with spring constants k2 and k3 and equilibrium lengths
2l0 and 3l0:

Ubend =
k2
2
(|ri+2−ri|−2l0)

2+
k3
2
(|ri+3−ri|−3l0)

2 (A8)

In Eq: A7 and Eq: A8 equilibrium length, l0 = 0.8, bond
spring constant, k1 = 57.1464, and bend spring constants
k2 = k3 = 50k1. The equations of motion for the beads,
with massm = 1, are integrated using the Velocity Verlet
algorithm.

Extensile activity is modeled via a pairwise active force
between beads i and j on adjacent filaments with anti-
polar alignment, of the form:

Fi = α
1
2 (t̂i − t̂j)

|rij |
, Fj = −Fi, (A9)

where t̂ is the tangent vector of the adjacent filaments
at the positions of beads i and j and activity parameter,
α = 0.06. We note that this active filament activity pa-
rameter, α, does not map to the nematohydrodynamic
activity, ζ. We add a constant short-range attractive
force, fattract, to the pairwise active force to represent
the attractive pull of kinesin motor proteins on two adja-
cent filaments undergoing shear. Activity is only applied
to adjacent filaments if t̂i · t̂j ≤ 0.5, resulting in extensile
activity through inter-filament shear. Our coarse-grained
model assumes that there is a uniform, high density, of
kinesin motor proteins and adenosine triphosphate chem-
ical energy (ATP). The model thus does not show the
characteristic slowing of extensile shear as ATP density
drops with time as seen in experiment [15].

To enable long-range hydrodynamic interactions, we
introduce a coarse-grained two-dimensional fluid layer lo-
cated below the filament volume and coupled to the fil-
aments. This novel underlying fluid layer is introduced
for two effects: to thermostat the active matter, and to
provide long-range hydrodynamic interactions across ar-
eas with low active filament density. Fluid-fluid parti-
cle interactions are governed by a short-range, repulsive,
Weeks-Chandler-Anderson potential similar to Eq. A6.
Fluid particles are thermostatted by a pairwise dissipa-
tive particle dynamics thermostat [54]. Interactions be-
tween fluid particles and active particles are represented
by a Lennard-Jones interaction with interaction strength
mediated by an artificial distance offset between the fluid
layer and the active layer. This interaction puts all ac-
tive particles in the simulation volume in contact with
the fluid thermostat.

Arbitrarily shaped boundary conditions can be im-
posed on both active and fluid particles in the system by
generating a wall of immobile boundary particles which
have an exclusively repulsive soft-sphere potential inter-
action. For the single-cusp cardioid system the bound-
ary particles were laid out with the following parametric
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equations:

x(r, θ) = r (1− cos(θ)) cos(θ)

y(r, θ) = r (1− cos(θ)) sin(θ),
(A10)

where r = 123σ is the characteristic radius of the cardioid
and θ is calculated to produce equally-spaced boundary
particles along the perimeter of the cardioid. The spac-
ing between boundary particles is calculated to give a
uniform repulsive force along the boundary and to be
small enough to effectively confine the fluid and active
particles.

Appendix B: Burau Representation of B3 and B4

The Artin braid groups are closed under a product
operation. The Burau representation is given by equation
9 and consists of 2(n−1) matrices of size (n−1)×(n−1)
where the empty product and group identity is mapped
to the n− 1 dimensional identity matrix.
The elements of B3 in the Burau representation are

σ1 =

(
1 1
0 1

)
, σ−1

1 =

(
1 −1
0 1

)
,

σ2 =

(
1 0
−1 1

)
, σ−1

2 =

(
1 0
1 1

)
.

(B1)

An iteration of the golden braid then looks like

βgolden = σ−1
2 σ1 =

(
1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
.

The eigenvalues of this matrix are 3+
√
5

2 = 1+ϕ0 = ϕ2
0,

and 3−
√
5

2 = 1− (ϕ0 − 1) = (ϕ0 − 1)2, where ϕ0 = 1+
√
5

2
is the golden ratio. Another method to see the rate of
stretching is to consider the action of this braidword on

an arbitrary vector

(
x
y

)
, which gives

(
x′

y′

)
= βgolden

(
x
y

)
=

(
1 1
1 2

)(
x
y

)
=

(
x+ y
x+ 2y

)
.

(B2)

Let Fk be the kth Fibonacci number. It holds that if
x = Fn−2, and y = Fn−1, then

x′ = Fn−1 + Fn−2 = Fn, (B3)

and

y′ = 2Fn−1 + Fn−2 = Fn + Fn−1 = Fn+1. (B4)

Thus, by induction, powers of βgolden produce the Fi-
bonacci sequence.

The elements of B4 are given as

σ1 =

 1 0 0
−1 1 0
0 0 1

 , σ−1
1 =

1 0 0
1 1 0
0 0 1

 ,

σ2 =

1 1 0
0 1 0
0 −1 1

 , σ−1
2 =

1 −1 0
0 1 0
0 1 1

 ,

σ3 =

1 0 0
0 1 1
0 0 1

 , σ−1
3 =

1 0 0
0 1 −1
0 0 1

 .

(B5)

An iteration of the silver braid, σ3σ1σ2σ
−1
3 σ−1

1 σ−1
2 ,

then looks like

βsilver = σ3σ1σ2σ
−1
3 σ−1

1 σ−1
2

=

1 0 0
0 1 1
0 0 1

 1 0 0
−1 1 0
0 0 1


1 1 0
0 1 0
0 −1 1

1 0 0
0 1 −1
0 0 1


1 0 0
1 1 0
0 0 1

1 −1 0
0 1 0
0 1 1


=

 2 −2 −1
−2 3 2
−1 2 2

 .

(B6)

The eigenvalues of this matrix are 3+2
√
2 = 1+2ϕ1 =

ϕ2
1, 3−2

√
2 = 1−2(ϕ1−2) = (ϕ1−2)2, and 1 = ϕ1(ϕ1−2),

where ϕ1 = 1 +
√
2 is the silver ratio. By definition

both the golden and silver ratios obey the conjugate and
identity relations of the metallic ratios:

1 + kϕk−1 = ϕ2
k−1,

1− k(ϕk−1 − k) = (ϕk−1 − k)2,
(B7)

and thus,

ϕk−1(ϕk−1 − k) = 1. (B8)

Appendix C: Descriptions of Supplemental Videos

Supplemental Video 1: Simulation over 3.35×105 time-
steps of a 100× 100 simulation of an active nematic con-
fined to a disk with fixed tangential anchoring. Defect
trajectories (blue and green) are shown in the disk on
the left. Defect worldlines are displayed on the right.
The projection axis denoted “X” is the horizontal axis of
the disk.
Supplemental Video 2: (0-50 seconds) Simulation over

7.5×105 time-steps of a 100×100 simulation of an active
nematic confined to a disk with fixed q = 3/2 anchoring.
Defect trajectories (blue, green, and purple) are shown
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in the disk on the left. Defect worldlines are displayed on
the right. The projection axis denoted “X” is the hori-
zontal axis of the disk. (50-66 seconds) Line stretching
depicts an advected contour (blue) undergoing exponen-
tial stretching due to defect mixing (red). The director
outside the circular domain is arbitrarily defined as hor-
izontal and not simulated.

Supplemental Video 3: (0-33 seconds) Simulation over
5.0×105 time-steps of a 100×100 simulation of an active
nematic confined to a disk with fixed q=4/2 anchoring.
Defect trajectories (blue, green, and purple) are shown
in the disk on the left. Defect worldlines are displayed on
the right. The projection axis denoted “X” is the hori-
zontal axis of the disk. (50-49 seconds) Line stretching
depicts an advected contour (blue) undergoing exponen-
tial stretching due to defect mixing (red). The director
outside the circular domain is arbitrarily defined as hor-
izontal and not simulated.

Supplemental Video 4: Simulation over 7.5×105 time-
steps of a 100× 100 simulation of an active nematic con-
fined to a disk with fixed q = 3/2 anchoring. The top
three graphs show the instantaneous vorticity, the run-
ning time-averaged vorticity, and the running standard
deviation of the vorticity. The bottom three graphs show
the instantaneous Q-criterion with Q = 0 isolines shown
in black, the running time-averaged Q-criterion, and the
running standard deviation of the Q-criterion.

Supplemental Video 5: Simulation over 5 × 105 time-
steps of a 100× 100 simulation of an active nematic con-
fined to a disk with fixed q = 4/2 anchoring. The top
three graphs show the instantaneous vorticity, the run-
ning time-averaged vorticity, and the running standard
deviation of the vorticity. The bottom three graphs show
the instantaneous Q-criterion with Q = 0 isolines shown

in black, the running time-averaged Q-criterion, and the
running standard deviation of the Q-criterion.
Supplemental Video 6: Simulation over 1.3×106 time-

steps of a 100× 100 simulation of an active nematic con-
fined to a disk with fixed q = 5/2 anchoring. The top
three graphs show the instantaneous vorticity, the run-
ning time-averaged vorticity, and the running standard
deviation of the vorticity. The bottom three graphs show
the instantaneous Q-criterion with Q = 0 isolines shown
in black, the running time-averaged Q-criterion, and the
running standard deviation of the Q-criterion.
Supplemental Video 7: Representative videos of the

active phases seen in Figure 7b (left). All simula-
tions are performed on a 200 × 200 lattice for 1.5 ×
106 time-steps. (ℓa, ℓc) values for shown simulations
are (0.0069, 0.0625) for turbulent, (0.0556, 0.0834) for
arrested, (0.0417, 0.0486) for metastable (golden), and
(0.0139, 0.0903) for golden braid.
Supplemental Video 8: Representative videos of the

active phases seen in Figure 7b (right). All sim-
ulations are performed on a 100 × 100 lattice for
1.5 × 106 time-steps. (ℓa, ℓc) values for shown simula-
tions are (0.0131, 0.0131) for turbulent, (0.0262, 0.0131)
for arrested, (0.0262, 0.0654) for metastable (silver),
(0.0196, 0.0393) for mixed metastable, (0.0131, 0.1309)
for melted, and (0.0131, 0.1178) for silver braid.
Supplemental Video 9: Agent-based simulation in car-

dioid confinement of 64,000 active particles comprising
800 filaments, each with 80 beads, and an additional 3068
fluid particles. The left shows bead-chain filaments with
green indicating CCW polar orientation and orange indi-
cating CW polar orientation with respect to the origin.
The right shows locally averaged director field and defect
trajectories in blue, green, and red, performing a golden
braid cycle.
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Figure 1. a) Illustrations of ±1/2 topological defects in a nematic director field. (b) Schematic illustration of the divergence
of two passive tracers whose separation distance D grows exponentially in time t, giving a positive Lyapunov exponent λ. (c)
Exponential stretching of a passively advected line, as a measure of topological entropy production, in simulated bulk active
nematic dynamics beginning along an arbitrary contour of the director field. Inset shows the semi-log plot of the advected
contour length over time. (d) Schematic mixing dynamics for “stirring rod” motion described by the braid word {σ1σ

−1
2 }. The

exponential stretching is deducible from the growth in perimeter of the black region. (e) Worldlines of topological defects for
the braidword shown in (d).

Figure 2. Braiding terminology demonstrated with two +1/2 defects in an active nematic confined in a circle with tangential
anchoring, from a 100× 100 Beris-Edwards nematohydrodynamic simulation. (a) Trajectory traces of defects (blue and green)
over simulation time (335,000 time-steps). Inset shows a snapshot of defects during cyclic motion. (b) Worldlines of the defects
in (a). (c) Defect worldlines spatially projected onto the x axis. Crossings (all clockwise) are labeled by a red “x”; the structure
is represented by the one-element braidword {σ1}.
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Figure 3. Periodic braiding orbits of +1/2 defects in a simulated active nematic confined in a disk with an anchoring direction
that winds through angle 2πq, for q = 3/2 (top row) and q = 4/2 (bottom row). (a) The anchoring direction along the circular
boundary and defect trajectories traced over the simulation time of 7.5 × 105 (q = 3/2) and 5.0 × 105 (q = 4/2) time-steps.
Each simulation was performed on a 100× 100 lattice with a dimensionless active length of 0.045, and a dimensionless nematic
coherence length of 0.011. Arrows indicate defect direction of motion. (b) (left) The projection of the trajectories onto the x
axis, where swaps between defects are labeled with a red “x” if clockwise and a black dot if counter-clockwise; (right) schematic
diagram summarizing the braid exhibited by the defects {σ1σ

−1
2 } for q = 3/2 and {σ1σ3σ2σ

−1
1 σ−1

3 σ−1
2 } for q = 4/2. (c) The

numerically calculated topological entropy using the E-tec and Line Stretching (LS) algorithms (shown in Supplemental videos
2 and 3), as well as the calculated Lyapunov exponent, in units reciprocal to the time between defect swaps. Each braiding
pattern consists of two effective swaps corresponding to a co-linear arrangement of defects. The numerical values of average
topological entropy per swap using E-tec are 0.5277 ± 0.0005 (q = 3/2) and 0.8610 ± 0.0004 (q = 4/2) for samples of 3000
randomly initialized advected trajectories. The numerical values of average topological entropy per swap using the LS algorithm
are 0.52 ± 0.03 (q = 3/2) and 0.90 ± 0.02 (q = 4/2). Errors are standard error of the mean taken over five advected curves.
The numerical values of average Lyapunov exponent per swap are 0.3873± .0003 (q = 3/2) and .8006± .0004 (q = 4/2). Each
uses 350 pairs of randomly initialized passive tracers. Both of which are, as required, below their respective analytic values of
topological entropy for ideal stirring rods, shown in the dashed blue line. Error bars are shown in red and are smaller than the
marker size.
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Figure 4. Defect dynamics in circular confinement with winding number q ≥ 5/2 in the anchoring direction. Columns show the
different studied values of q. a) Samples of the aperiodic trajectories. For the q = 5/2 system, trajectories over 40 time-steps are
shown. For the q = 6/2, 7/2, 8/2, 9/2 systems, trajectories are shown over 100 time-steps and for q = 10/2 300 time-steps are
shown. b) The passive ground state configurations of the defects. In all studied geometries, the ground states show a symmetric
placement of defect cores about the boundary. However, orientations of the defects are not symmetric, with orientations varying
locally to match the fixed anchoring against the circular boundaries. c) The time averaged vorticity shown throughout the
simulation time of 106 time-steps. Each simulation was performed on a 100 × 100 lattice, at a dimensionless active length of
.0003, and a dimensionless nematic coherence length of 0.011.
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Figure 5. a) Schematic illustration of a +1/2 defect in three orientations and positions consistent with a line of effective
tangential anchoring; arrows mark defect self-propulsion direction. The only defect orientation whose trajectory does not break
an anchoring line is parallel to that line and which is away from the fixed anchoring point on the boundary. Trajectories
are colored by angle with respect to r̂. b) The set of lines parallel to the anchoring direction at the associated point on the
surface, showing the cardioid, nephroid, and trefoiloid. (c) Envelope curves (dashed) extracted from the lines of (b), together
with simulated defect trajectories. Defect trajectories tend to stay approximately within the envelopes and to intersect with
the cusps in the envelope. (d) The active force (Eq. 14) imposed by the winding anchoring conditions, with splay-dominated
regions in pink and bend-dominated regions in cyan. In (b)-(d), each row corresponds to the anchoring winding q labeled at
left.
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Figure 6. Coupled topologies of flow fields and topological defect trajectories in active nematics confined to disks with
excess topological charge due to anchoring winding q as labeled at left. a) Snapshots from time series showing representative
dynamics of +1/2 defects and flow fields. The magenta-green heatmaps show the Q-criterion of the flow field. Black curves
are the viscometric isolines where Q = 0, each enclosing a vortex, whose vorticity is indicated by blue or red curved arrows.
Colored circles mark the instantaneous positions of +1/2 defects. The braids exhibited by the +1/2 defects are the golden
braid for q = 3/2 system and the silver braid for q = 4/2. For q = 5/2 (and higher) no periodic braid is observed. b) The
time-averaged vorticity field, showing 2, 4, and 6 gyres for the q = 3/2, 4/2, and 5/2 systems respectively. This counting
excludes the change in sign of vorticity in a narrow band near the boundary. c) Directed graphs schematically summarizing the
flow structure mandated by the boundary conditions, containing 4|q − 1| gyres among its cycles. Each node has a total degree
of 0 as is consistent with incompressible flow.
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Figure 7. a) Schematic illustration of defect pinning on concave boundary features. The outwards facing normal vectors are
shown as black arrows. The left image shows a non-pinning director configuration, in which there is a single bend distortion
from the boundary. The right image shows defect pinning whereby the bend wall shown on the left nucleates a defect pair
and pins a −1/2 defect against the concave boundary, and the created +1/2 defect moves into the nematic bulk. b) Active
phase diagrams for the cardioid and nephroid epitrochoid curves using continuum Beris-Edwards nematohydrodynamics. The
stability of the braiding patterns are highly dependent on the confining geometries. Cardioid simulations performed on a
200 × 200 lattice and nephroid simulations performed on a 100 × 100 lattice each for 1.5 × 106 time-steps. Simulations are
labeled turbulent if there is spontaneous pair production in the nematic bulk, arrested if the defects do not move, and melted
if the defect cores can not be uniquely distinguished. A braid is labeled metastable if the dynamics maintain the flow structure
of the braids, but are non-pinning and/or non-cyclic, temporarily absorbing and emitting a positive defect at the cusp during
the braid cycle through pair-annihilation and subsequent pair-creation of ±1/2 defects. Representative dynamics are shown
in Supplemental Videos 7 and 8. c) Snapshots from braiding regimes. (ℓa, ℓc) values are (0.0139, 0.0903) for the cardioid and
(0.0131, 0.1178) for the nephroid, showing pinned negative defects at epitrochoid cusps and motile defects in respective golden
and silver braiding patterns.
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Figure 8. a) Time series of filament dynamics of the agent-based simulations of confined active nematic filaments inside the
cardioid with 4× 105 time-steps between each image shown. Green and orange indicate CCW and CW polar orientation with
respect to the origin, with underlying fluid particles not visualized. Simulations consists of 800 filaments, each 80 beads long.
Visualization times shown above are in arbitrary simulation time units. b) Locally-averaged director field corresponding to
filament visualizations above. Three long-lived defects were tracked using the director field and their trajectories plotted over
the director field showing their path and braiding dynamics. c) Time-averaged vorticity of agent-based simulations’ filament
particle velocities showing double gyre structure with positive vorticity shown in red and negative vorticity shown in blue.
Vorticity units are σ

√
m/ε (see Eq. A6). Full simulation with interpolated director field and extracted defect cores and

trajectories is shown in Supplemental Video 9.
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